【题目】如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?
【答案】解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,
如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,
∵∠CAD=30°,∠CAB=60°,
∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,
∴∠ABD=∠BAD,
∴BD=AD=12海里,
∵∠CAD=30°,∠ACD=90°,
∴CD= AD=6海里,
由勾股定理得:AC= =6 ≈10.392>8,
即渔船继续向正东方向行驶,没有触礁的危险.
【解析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.
【考点精析】解答此题的关键在于理解关于方向角问题的相关知识,掌握指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角.
科目:初中数学 来源: 题型:
【题目】某公司生产的某种商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
时间t(天) | 1 | 3 | 5 | 10 | 36 | … |
日销售量m(件) | 94 | 90 | 86 | 76 | 24 | … |
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1= t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣ t+40(21≤t≤40且t为整数).
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的表达式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:
(1)港口A与小岛C之间的距离;
(2)甲轮船后来的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,□ABCD 中,AE 平分∠BAD,交BC 于E,DE⊥AE,下列结论:①DE平分∠ADC;②E 是BC 的中点;③AD=2CD;④四边形ADCE 的面积与△ABE的面积比是3:1,其中正确的结论的个数有( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,抛物线y= 与x 轴的两个交点分别为A(﹣3,0),B(1,0),与y轴的交点为D,对称轴与抛物线交于点C,与x轴负半轴交于点H.
(1)求抛物线的表达式;
(2)点E,F 分别是抛物线对称轴CH 上的两个动点(点E 在点F 上方),且EF=1,求使四边形BDEF 的周长最小时的点E,F 坐标及最小值;
(3)如图2,点P 为对称轴左侧,x 轴上方的抛物线上的点,PQ⊥AC 交AC 于点Q,是否存在这样的点P 使△PCQ与△ACH 相似,若存在请求出点P 的坐标,若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.
(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE= S△ACD , 求点E的坐标;
(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.
(1)求证:无论k为何值,方程总有两个不相等实数根;
(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升 cm.
(1)开始注水1分钟,丙的水位上升cm.
(2)开始注入分钟的水量后,乙的水位比甲高0.5cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com