精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:

(1)港口A与小岛C之间的距离;
(2)甲轮船后来的速度.

【答案】
(1)

解:作BD⊥AC于点D,如图所示:

由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,

在Rt△ABD中,

∵AB=30海里,∠BAC=30°,

∴BD=15海里,AD=ABcos30°=15 海里,

在Rt△BCD中,

∵BD=15海里,∠BCD=45°,

∴CD=15海里,BC=15 海里,

∴AC=AD+CD=15 +15海里,

即A、C间的距离为(15 +15)海里.


(2)

解:∵AC=15 +15(海里),

轮船乙从A到C的时间为 = +1,

由B到C的时间为 +1﹣1=

∵BC=15 海里,

∴轮船甲从B到C的速度为 =5 (海里/小时).


【解析】(1)根据题意画出图形,再根据平行线的性质及直角三角形的性质解答即可.(2)根据甲乙两轮船从港口A至港口C所用的时间相同,可以求出甲轮船从B到C所用的时间,又知BC间的距离,继而求出甲轮船后来的速度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
(1)求证:PA为⊙O的切线;
(2)若OB=5,OP= ,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组: ,并写出其整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.
(1)求证:△ADE≌△BFE;
(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+ x+ 与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是(
A.(4,3)
B.(5,
C.(4,
D.(5,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF= 米,则这段弯路的长度为(
A.200π米
B.100π米
C.400π米
D.300π米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).

(1)当t为何值时,PQ∥BC.
(2)设△AQP的面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=kx+b,y= ,b、k为整数且|bk|=1.
(1)讨论b,k的取值.
(2)分别画出两种函数的所有图象.(不需列表)
(3)求y=kx+b与y= 的交点个数.

查看答案和解析>>

同步练习册答案