精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).

(1)当t为何值时,PQ∥BC.
(2)设△AQP的面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.

【答案】
(1)

解:由题意知:BP=2t,AP=10﹣2t,AQ=2t,

∵PQ∥BC,

∴△APQ∽△ABC,

=

=

t=

即当t为 s时,PQ∥BC;


(2)

解:∵AB=10cm,AC=8cm,BC=6cm,

∴AB2=AC2+BC2

∴∠C=90°,

过P作PD⊥AC于D,

则PD∥BC,

∴△APD∽△ABC,

=

=

PD= (10﹣2t),

∴S= AQPD= 2t (10﹣2t)=﹣ t2+6t=﹣ (t﹣ 2+7.5,

∵﹣ <0,开口向下,有最大值,

当t= 秒时,S的最大值是7.5cm2


(3)

解:假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,

则SAPQ= SABC

即﹣ t2+6t= × ×8×6

t2﹣5t+10=0,

∵△=52﹣4×1×10=﹣15<0,

∴此方程无解,

即不存在某时刻t,使线段PQ恰好把△ABC的面积平分.


【解析】(1)证△APQ∽△ABC,推出 = ,代入得出 = ,求出方程的解即可(2)求出∠C=90°,过P作PD⊥AC于D,证△APD∽△ABC,代入得出方程 = ,求出PD= (10﹣2t),根据三角形的面积公式求出即可;(3)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,得出方程﹣ t2+6t= × ×8×6,求出此方程无解,即可得出答案.
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形,以及对相似三角形的判定的理解,了解相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1 , x2 , a,b的大小关系为(
A.x1<x2<a<b
B.x1<a<x2<b
C.x1<a<b<x2
D.a<x1<b<x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在信宜市某“三华李”种植基地有A、B两个品种的树苗出售,已知A种比B种每株多2元,买1株A种树苗和2株B种树苗共需20元.
(1)问A、B两种树苗每株分别是多少元?
(2)为扩大种植,某农户准备购买A、B两种树苗共360株,且A种树苗数量不少于B种数量的一半,请求出费用最省的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:

(1)港口A与小岛C之间的距离;
(2)甲轮船后来的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,□ABCD 中,AE 平分∠BAD,交BC 于E,DE⊥AE,下列结论:①DE平分∠ADC;②E 是BC 的中点;③AD=2CD;④四边形ADCE 的面积与△ABE的面积比是3:1,其中正确的结论的个数有( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,抛物线y= 与x 轴的两个交点分别为A(﹣3,0),B(1,0),与y轴的交点为D,对称轴与抛物线交于点C,与x轴负半轴交于点H.

(1)求抛物线的表达式;
(2)点E,F 分别是抛物线对称轴CH 上的两个动点(点E 在点F 上方),且EF=1,求使四边形BDEF 的周长最小时的点E,F 坐标及最小值;
(3)如图2,点P 为对称轴左侧,x 轴上方的抛物线上的点,PQ⊥AC 交AC 于点Q,是否存在这样的点P 使△PCQ与△ACH 相似,若存在请求出点P 的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.
(1)求证:无论k为何值,方程总有两个不相等实数根;
(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是AB所对弦AB上一动点,过点P作PM⊥AB交AB于点M,连接MB,过点P作PN⊥MB于点N.已知AB=6cm,设A、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

2.0

2.3

2.1

0.9

0

(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为cm.

查看答案和解析>>

同步练习册答案