精英家教网 > 初中数学 > 题目详情

已知抛物线y=x2+(m+4)x-2(m+6)(m为常数,m≠-8))与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.
(1)并此抛物线的解析式;
(2)求点A、B、C的坐标.

解:(1)∵抛物线y=x2+(m+4)x-2(m+6)(m为常数,m≠-8))的对称轴为
而抛物线与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,
,m=-6
∴所求抛物经的解析式为y=x2-2x;

(2)当y=0时,x2-2x=0,解得x1=0,x2=2
当x=0时,y=x2-2x=(x-1)2-1,解得x1=0,x2=2
∴点A、B、C的坐标.分别为(0,0),(2,0),(1,-1).
分析:(1)根据已知条件知,该抛物线的对称轴是x=1,然后利用抛物线对称轴方程列出关于m的方程=1,则易求m的值;
(2)根据(1)中的函数解析式知,分别求当x=0,y的值;当y=0时,x的值.
点评:本题考查了抛物线与x轴的交点、二次函数的性质.解题的关键是根据已知条件推知x=1是抛物线y=x2+(m+4)x-2(m+6)(m为常数,m≠-8))的对称轴.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案