精英家教网 > 初中数学 > 题目详情
如图1,AD和AE分别是△ABC的BC边上的高和中线,点D是垂足,点E是BC的中点,规定:λA=
DEBE
.特别地,当点D、E重合时,规定:λA=0.另外,对λB、λC作类似的规定.
精英家教网
(1)如图2,在△ABC中,∠C=90°,∠A=30°,求λA、λC
(2)在每个小正方形边长均为1的4×4的方格纸上,画一个△ABC,使其顶点在格点(格点即每个小正方形的顶点)上,且λA=2,面积也为2;
(3)判断下列三个命题的真假(真命题打“√”,假命题打“×”):
①若△ABC中λA<1,则△ABC为锐角三角形;
 

②若△ABC中λA=1,则△ABC为直角三角形;
 

③若△ABC中λA>1,则△ABC为钝角三角形.
 
分析:(1)根据直角三角形斜边中线、高的特点进行转换即可得出答案,
(2)根据题目要求即可画出图象,
(3)根据真假命题的定义即可得出答案.
解答:精英家教网解:(1)如图,作BC边上的中线AD,又AC⊥DC,
∴λA=
CD
BD
=1,
过点C分别作AB边上的高CE和中线CF,
∵∠ACB=90°,
∴AF=CF,
∴∠ACF=∠CAF=30°,
∴∠CFE=60°,
∴λC=
EF
AF
=
EF
CF
=cos60°=
1
2

精英家教网
(2)如图:

(3)①×,②√,③√.
点评:本题主要考查了直角三角形斜边中线、高的性质以及特殊角的三角函数值,同时考查了画图,真假命题的判断,比较复杂,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,AD和AE分别是△ABC的BC边上的高和中线,点D是垂足,点E是BC的中点,规定:λA=
DE
BD
.如图2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

操作探究:
我们知道一个三角形中有三条高线和三条中线.如图1,AD和AE分别是△ABC中BC边上的高线和中线,我们规定:kA=
DE
BE
,另外,对kB、kC作类似的规定.
(1)如图2,在△ABC中,∠C=90°,∠A=30°,则kA的值为
1
1
,kC的值为
1
2
1
2

(2)在每个小正方形边长均为1的4×4的方格纸上(如图3),画一个△ABC,使其顶点在格点(格点即每个小正方形的顶点)上,且kA=2,面积也为2;
(3)判断下面三个命题的真假(真命题打“√”,假命题的打“×”)
①若△ABC中,kA<1,则△ABC为锐角三角形
×
×

②若△ABC中,kA=1,则△ABC为直角三角形

③若△ABC中,kA>1,则△ABC为钝角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

(11·台州)(12分)如图1,AD和AE分别是△ABC的BC边上的高和中线,
点D是垂足,点E是BC的中点,规定:.特别地,当点D、E重合时,规定:λA
=0.另外,对λB、λC作类似的规定.

(1)如图2,在△ABC中,∠C=90º,∠A=30º,求λA、λC
(2)在每个小正方形边长均为1的4×4的方格纸上,画一个△ABC,使其顶点在格点(格点即每个小正方形的顶点)上,且λA=2,面积也为2;
(3)判断下列三个命题的真假(真命题打“P”,假命题打“×”):
①若△ABC中λA<1,则△ABC为锐角三角形;【   】
②若△ABC中λA=1,则△ABC为锐角三角形;【   】
③若△ABC中λA>1,则△ABC为锐角三角形.【   】

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(湖南郴州卷)数学 题型:解答题

(11·台州)(12分)如图1,AD和AE分别是△ABC的BC边上的高和中线,

点D是垂足,点E是BC的中点,规定:.特别地,当点D、E重合时,规定:λA

=0.另外,对λB、λC作类似的规定.

(1)如图2,在△ABC中,∠C=90º,∠A=30º,求λA、λC

(2)在每个小正方形边长均为1的4×4的方格纸上,画一个△ABC,使其顶点在格点(格点即每个小正方形的顶点)上,且λA=2,面积也为2;

(3)判断下列三个命题的真假(真命题打“P”,假命题打“×”):

①若△ABC中λA<1,则△ABC为锐角三角形;【    】

②若△ABC中λA=1,则△ABC为锐角三角形;【    】

③若△ABC中λA>1,则△ABC为锐角三角形.【    】

 

查看答案和解析>>

同步练习册答案