【题目】为提高市民的精神生活美化城市环境,城市管理局从外地新进一批绿化树苗,现有两种运输方式可供选择,
方式一:使用快递公司的邮车运输,装卸收费500元,另外每公里再加收5元;
方式二:使用铁路运输公司的火车运输,装卸收费900元,另外每公里再加收3元.
(1)请分别写出邮车、火车运输的总费用为(元)、(元)与运输路程(公里)之间的函数关系式;
(2)你认为选用哪种运输方式较好,为什么?
科目:初中数学 来源: 题型:
【题目】有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:
与标准质量的差值(单位:千克) | 0 | 1 | 2.5 | |||
筐数 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?
(2)与标准重量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价2.8元,则出售这20筐白菜可卖多少元?(结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.
(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用a、b、c作三角形的三边,其中不能构成直角三角形的是( )
A. a2=(b+c)(b﹣c) B. a:b:c=1: :2
C. a=32,b=42,c=52 D. a=5,b=12,c=13
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系 ;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解题)先阅读下列一段文字,然后解答问题:
已知:方程
方程
方程
方程
问题:观察上述方程及其解,再猜想出方程: 的解,并试着解分式方程验证.
【答案】
【解析】试题分析:首先通过观察发现,它的规律是:方程x的解为x1=n+1,x2=,利用这个规律就可以求出方程的解.
试题解析:∵
∴x2-11x-120=0
解得: .
【题型】解答题
【结束】
20
【题目】(2017北京市)关于x的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程有一根小于1,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年1月的日历表如表所示:
日 | 一 | 二 | 三 | 四 | 五 | 六 |
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
快到放寒假了,班主任孙老师看日历届时准备安排一节假期安全班会课,孙老师把日历与本学期书本上73页的数学活动3联系在一起,经过思索后,孙老师给孩子们展示两个问题:
(1)若连续三天的号数之和等于48,那么这三天分别是几号?
(2)用一个“T”字形的框在表中框出四个数,这四个数的和能等于83吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列各题并按要求完成:
(1)定义:若两个一元二次方程有一个相同的实数根,则称这两个方程为“友好方程”,已知关于x的一元二次方程 x 2x 0 与 x 3x m 1 0 为“友好方程”,求 m 的值;
(2)关于x的一元二次方程 有两个不相等的实数根,,且二次根式有意义,若T=,求T的取值范围;
(3)我们不妨约定方程的整数解称之为“硬核”,例如x=1就称为方程(x-1)(2x+1)=0 的一个“硬核”,若一元二次方程(k-3k+2)x+(2k-4k+1)x+k-k=0(k为常数)有两个不同的“硬核”,试确定方程的两个“硬核”及常数 k 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动.如图,她在山坡坡脚A出测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°.已知OA=200m,此山坡的坡比i=,且O、A、D在同一条直线上.
求:(1)楼房OB的高度;
(2)小红在山坡上走过的距离AC.(计算过程和结果均不取近似值)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com