已知△ABC和△DEF相似,且△ABC的三边长为3、4、5,如果△DEF的周长为6,那么下列不可能是△DEF一边长的是( )
A. 1.5 B. 2 C. 2.5 D. 3.
D
考点: 相似三角形的性质.
分析: 由△ABC的三边长为2、3、4,即可求得△ABC的周长,然后根据相似三角形周长的比等于相似比得出两三角形的相似比,再把各选项中的值与相似比相乘即可得出结论.
解答: 解:∵△ABC的三边长为3、4、5,
∴△ABC的周长=12,
∴
=
=2,
A、1.5×2=3,与△ABC一边长相符,故本选项正确;
B、2×2=4,与△ABC一边长相符,故本选项正确;
C、2.5×2=5,与△ABC一边长相符,故本选项正确;
D、3×2=6,故本选项错误.
故选D.
点评: 本题考查的是相似三角形的性质,熟知相似三角形周长的比等于相似比是解答此题的关键.
科目:初中数学 来源: 题型:
△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△A
BC的面积是3,则△A′B′C′的面积是( )
A.3 B.6 C.9 D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
阅读材料:
例:说明代数式
+
的几何意义,并求它的最小值.
解:
+
=
+
,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则
可以看成点P与点A(0,1)的距离,
可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以
PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3
,即原式的最小值为3
.
根据以上阅读材料,解答下列问题:
(1)代数式
+
的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(2,3)或(2,﹣3)的距离之和.(填写点B的坐标)
(2)代数式
+
的最小值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com