【题目】如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数 (x>0)的图象上.若点B的坐标为(﹣4,﹣4),则k的值为( )
A. 2 B. 6 C. 2或3 D. ﹣1或6
【答案】D
【解析】
根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形DEOH=S四边形FBGO,根据反比例函数比例系数的几何意义即可求出k2-5k+10=16,再解出k的值即可.
如图:
∵四边形ABCD、FAEO、OEDH、GOHC为矩形,
又∵AO为四边形FAEO的对角线,OC为四边形OGCH的对角线,
∴S△AEO=S△AFO,S△OHC=S△OGC,S△DAC=S△BCA,
∴S△DAC -S△AEO-S△OHC=S△BAC-S△AFO-S△OGC,
∴S四边形FBGO=S四边形DEOH=(-4)×(-4)=16,
∴xy=k2-5k+10=16,
解得k=-1或k=6.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,直线l与⊙O相切于点A,作半径OB并延长至点C,使得BC=OB,作CD⊥直线l于点D,连接BD得∠CBD=75°,则∠OCD=_____度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2-2ax+3(a≠0)的图象与x、y轴交于A、B、C三点,其中AB=4,连接BC.
(1)求二次函数的对称轴和函数表达式;
(2)若点M是线段BC上的动点,设点M的横坐标为m,过点M作MN∥y轴交抛物线于点N,求线段MN的最大值.
(3)当0≤x≤t,则3≤y≤4,直接写出t的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,CE⊥AB于E,弦AD交CE延长线于点F,CF﹦AF.
(1)求证:;
(2)若BC=8,tan∠DAC=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)已知∠MAN=135°,正方形ABCD绕点A旋转.
(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.
①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是 ;
②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的序号是___________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一司机驾驶汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.
(1)当他按原路匀速返回时,求汽车速度v(千米/小时)与时间t(小时)之间的函数关系式;
(2)如果该司机匀速返回时,用了4.8小时,求返回时的速度;
(3)若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过每小时120公里,最低车速不得低于每小时60公里,试问返程时间的范围是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,河流的两岸,互相平行,河岸上有一排间隔为的电线杆,,…某人在河岸的处测得,然后沿河岸走了到达处,测得∠CBN=60°,求河流的宽度.(结果精确到)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=540,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F。
(1)求证:BE=CE;
(2)求∠CBF的度数;
(3)若AB=6,求的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com