精英家教网 > 初中数学 > 题目详情

【题目】一司机驾驶汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.

(1)当他按原路匀速返回时,求汽车速度v(千米/小时)与时间t(小时)之间的函数关系式;

(2)如果该司机匀速返回时,用了4.8小时,求返回时的速度;

(3)若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过每小时120公里,最低车速不得低于每小时60公里,试问返程时间的范围是多少?

【答案】解:(1∵s=480

2)当t4.8时, v100

答:返回时的速度为100千米/小时.

3)如图,

k4800tv的减小而增大

v120时,t4

v60时,t8

∴4≤t≤8

答:根据限速规定,返程时间不少于4小时且不多于8小时.

【解析】

1)根据速度×时间=路程,可以求出甲地去乙地的路程;再根据行驶速度=路程÷时间,得到vt的函数解析式;

2)把t4.8代入vt的函数解析式即可;

分别计算当v120v60时对应的时间即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某水果店出售一种水果,经过市场估算,若每个售价为20元时,每周可卖出300个.经过市场调查,如果每个水果每降价1元,每周可多卖出25个,若设每个水果的售价为x(x<20).

(1)则这一周可卖出这种水果为________(用含x的代数式表示);

(2)若该周销售这种水果的收入为6400元,那么每个水果的售价应为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,弦BDAOE,连接BC,过点OOFBCF,若BD=8cm,AE=2cm,则OF的长度是(  )

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数 (x>0)的图象上.若点B的坐标为(﹣4,﹣4),则k的值为(  )

A. 2 B. 6 C. 23 D. ﹣16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一条直线分别交轴、轴于A、B两点,交反比例函数≠0)位于第二象限的一支于C点,OA=OB=2.

(1)    

(2)求直线所对应的一次函数的解析式;

(3)根据(1)所填的值,直接写出分解因式+7的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.

(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?

(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△AOB中,∠AOB=90°,点A的坐标为(4,2),BO=4,反比例函数y=的图象经过点B,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则

①二次函数的最大值为a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④当y>0时,﹣1<x<3,其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】建立适当的坐标系,运用函数知识解决下面的问题:

如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E到桥下水面的距离EF3米时,水面宽AB6米,一场大雨过后,河水上涨,水面宽度变为CD,且CD=2米,此时水位上升了多少米?

查看答案和解析>>

同步练习册答案