精英家教网 > 初中数学 > 题目详情

【题目】如图,AC是⊙O的直径,弦BDAOE,连接BC,过点OOFBCF,若BD=8cm,AE=2cm,则OF的长度是(  )

A. 3cm B. cm C. 2.5cm D. cm

【答案】D

【解析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.

连接OB,

AC是⊙O的直径,弦BDAOE,BD=8cm,AE=2cm.

RtOEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2

解得:OE=3,

OB=3+2=5,

EC=5+3=8.

RtEBC中,BC=

OFBC,

∴∠OFC=CEB=90°.

∵∠C=C,

∴△OFC∽△BEC,

,即

解得:OF=

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A在直线l上,点B在直线l外,点B关于直线l的对称点为C,连接AC,过点BBDAC于点D,延长BDE使BE=AB,连接AE并延长与BC的延长线交于点F.

1)补全图形;

2)若∠BAC=2α,求出∠AEB的大小(用含α的式子表示);

3)用等式表示线段EFBC的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的坐标分别为A(﹣3,0),C(1,0),

(1)求过点A、B的直线的函数表达式;

(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;

(3)在(2)的条件下,如P、Q分别是ABAD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得以点A、P、Q为顶点的三角形与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰中,BC边上的高,且,则等腰底角的度数为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的重直平分线交于点.

1)求证:

2)当时,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC绕点B逆时针旋转α得到DBE,DE的延长线与AC相交于点F,连接DA、BF,ABC=α=60°,BF=AF

1求证:DABC;

2猜想线段DF、AF的数量关系,并证明你的猜想

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题解决)

一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?

小明通过观察、分析、思考,形成了如下思路:

思路一:将BPC绕点B逆时针旋转90°,得到BP′A,连接PP′,求出∠APB的度数;

思路二:将APB绕点B顺时针旋转90°,得到CP'B,连接PP′,求出∠APB的度数.

请参考小明的思路,任选一种写出完整的解答过程.

(类比探究)

如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在探究三角形内角和等于180°的证明过程时,小明同学通过认真思考后认为,可以通过剪拼的方法将一个角剪下来,然后把这个角进行平移,从而实现把三角形的三个内角转移到一个平角中去,如图所示:

1)小明同学根据剪拼的过程,抽象出几何图形;并进行了推理证明,请你帮助小明完成

证明过程.

证明:过点BBN//AC,延长ABM

2)小军仿照小明的方法将三角形的三个内角都进行了移动,也将三个内角转移到一个平 角中去,只不过平角的顶点放到了AB边上,如图所示:请你仿照小明的证明过程,抽象出几何图形再进行证明.

3)小兰的方法和小明以及小军的方法都不相同,她将三角形三个内角分别沿某一条直线翻折,一共进行了三次尝试,如图所示:

小兰第三次成功的关键是什么,请你写出证明思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的四个顶点分别在反比例函数y=y=(x>0,0<m<n)的图象上,对角线BDy轴,且BDAC于点P.已知点B的横坐标为4.

(1)当m=4,n=20时.

①若点P的纵坐标为2,求直线AB的函数表达式.

②若点PBD的中点,试判断四边形ABCD的形状,并说明理由.

(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

查看答案和解析>>

同步练习册答案