精英家教网 > 初中数学 > 题目详情

【题目】(问题解决)

一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?

小明通过观察、分析、思考,形成了如下思路:

思路一:将BPC绕点B逆时针旋转90°,得到BP′A,连接PP′,求出∠APB的度数;

思路二:将APB绕点B顺时针旋转90°,得到CP'B,连接PP′,求出∠APB的度数.

请参考小明的思路,任选一种写出完整的解答过程.

(类比探究)

如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.

【答案】(1)见解析;(2)见解析.

【解析】

(1)先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出APP'是直角三角形,得出∠APP'=90°,即可得出结论;

(2)同(1)的思路一的方法即可得出结论.

1)如图1,

BPC绕点B逆时针旋转90°,得到BP′A,连接PP′,

∴△ABP'≌△CBP,

∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,

RtPBP'中,BP=BP'=2,

∴∠BPP'=45°,根据勾股定理得,PP'=BP=2

AP=1,

AP2+PP'2=1+8=9,

AP'2=32=9,

AP2+PP'2=AP'2

∴△APP'是直角三角形,且∠APP'=90°,

∴∠APB=APP'+BPP'=90°+45°=135°;

(2)如图2,

BPC绕点B逆时针旋转90°,得到BP′A,连接PP′,

∴△ABP'≌△CBP,

∴∠PBP'=90°,BP'=BP=1,AP'=CP=

RtPBP'中,BP=BP'=1,

∴∠BPP'=45°,根据勾股定理得,PP'=BP=

AP=3,

AP2+PP'2=9+2=11,

AP'2=(2=11,

AP2+PP'2=AP'2

∴△APP'是直角三角形,且∠APP'=90°,

∴∠APB=APP'﹣BPP'=90°﹣45°=45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,将一块含有角的三角板放置在一条直线上,边与直线重合,边的垂直平分线与边分别交于两点,连接.

(1) 三角形;

(2)直线上有一动点(不与点重合) ,连接并把绕点顺时针旋转,连接.当点在图2所示的位置时,证明.我们可以用来证明,从而得到.当点移动到图3所示的位置时,结论是否依然成立?若成立,请你写出证明过程;若不成立,请你说明理由.

(3)当点边上移动时(不与点重合)周长的最小值是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4.

1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2

2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,弦BDAOE,连接BC,过点OOFBCF,若BD=8cm,AE=2cm,则OF的长度是(  )

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:

(1)求拱桥所在抛物线的解析式;

(2)当水面下降1m时,则水面的宽度为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中第九卷《勾股》主要讲述了以测量问题为中心的直角 三角形三边互求,之中记载了一道有趣的折竹抵地问题:

今有竹高一丈,末折抵地,去本四尺,问折者高几何?

译文:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为多少尺?(备注:1=10尺)

如果设竹梢到折断处的长度为尺,那么折断处到竹子的根部用含的代数式可表示为__________尺,根据题意,可列方程为_______________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边OAB的边长为2,点Bx轴上,反比例函数的图象经过A点,将OAB绕点O顺时针旋转α(0°<α<360°),使点A落在双曲线上,则α________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(53)B(65)C(46)

(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.

(2)将△A1B1C1向左平移6个单位,再向上平移5个单位,画出平移后得到的△A2B2C2,并写出点B2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①所示是边长为的大正方形中有一个边长为的小正方形.图②是由图①中阴影部分拼成的一个长方形.

1)设图①中阴影部分的面积为,图②中阴影部分的面积为,请用含的式子表示: ;(不必化简)

2)以上结果可以验证的乘法公式是

3)利用(2)中得到的公式,计算:.

查看答案和解析>>

同步练习册答案