精英家教网 > 初中数学 > 题目详情

【题目】如图1,在中,点DE分别在ABAC上,

求证:

,把绕点A逆时针旋转到图2的位置,点MPN分别为DEDCBC的中点,连接MNPMPN

判断的形状,并说明理由;

绕点A在平面内自由旋转,若,试问面积是否存在最大值;若存在,求出其最大值若不存在,请说明理由.

【答案】(1)详见解析;(2)①△PMN是等腰直角三角形,理由详见解析;②

【解析】

利用平行线分线段成比例定理得出比例式即可得出,即可得出结论;

利用三角形中位线定理和,判断出,即:是等腰三角形,再判断出,得出是等腰直角三角形;

先判断出PM最大时,面积最大,即:点DAB的延长线上,进而求出,即可得出PM的最大值即可.

解:

是等腰直角三角形,

理由:PM分别是CDDE的中点,

NM分别是BCDE的中点,

是等腰三角形,

是等腰直角三角形,

知,是等腰直角三角形,

最大时,面积最大,

DAB的延长线上,

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,弦ABCD相交点P,弦CABD的延长线交于S,∠APD2m°,∠PACm°+15°

1)求∠S的度数;

2)连ADBC,若,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)(  )

A. 21.7 B. 22.4 C. 27.4 D. 28.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 已知:点A20160)、B02018),以AB为斜边在直线AB下方作等腰直角ABC,则点C的坐标为(  )

A. 22 B. 2,﹣2 C. (﹣11 D. (﹣1,﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yx2+bx+c经过点ABC,已知A(﹣10),C0,﹣3).

1)求抛物线的解析式;

2)如图1,抛物线顶点为EEFx轴于F点,Mm0)是x轴上一动点,N是线段EF上一点,若∠MNC90°,请指出实数m的变化范围,并说明理由.

3)如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2k0)与抛物线相交于点PQ(点P在左边),过点Px轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下列命题完成以下问题。(命题)若是关于的一元二次方程的两个实数根,则有

〖问题1〗若是关于的一元二次方程的两个实数根,则有____________,___________。

〖问题2〗若是一元二次方程的两个实数根,则有____________,___________。

〖问题3〗甲、乙两同学解同一道一元二次方程时,甲看错了一次项系数,得两根为27,乙看错了常数项,得两根为1和-10。根据这些数据,你能否确定原来正确的方程?如果能,请写出原方程,并写出你的推导过程;如果不能,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在∠MON的边ON上,ABOMBAE=OBDEONEAD=AODCOMC

1)求证:四边形ABCD是矩形;

2)若DE=3OE=9,求ABAD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点MN,连接MN

(1)求证:△ABM∽△NDA

(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子顶端距离地面AB2米,梯子与地面夹角α的正弦值sinα0.8.梯子底端位置不动,将梯子斜靠在左墙时,顶端距离地面2.4米,则小巷的宽度为( )

A. 0.7B. 1.5

C. 2.2D. 2.4

查看答案和解析>>

同步练习册答案