南山植物园中现有A、B两个园区,已知A园区为长方形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.
(1)请用代数式表示A、B两园区的面积之和并化简;
(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.
①求x、y的值;
②若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如表:
| C | D |
投入(元/平方米) | 12 | 16 |
收益(元/平方米) | 18 | 26 |
求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)
【考点】整式的混合运算.
【专题】应用题.
【分析】(1)根据长方形的面积公式和正方形的面积公式分别计算A、B两园区的面积,再相加即可求解;
(2)①根据等量关系:整改后A区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x,y的值;
②代入数值得到整改后A、B两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.
【解答】解:(1)(x+y)(x﹣y)+(x+3y)(x+3y)
=x2﹣y2+x2+6xy+9y2
=2x2+6xy+8y2(平方米)
答:A、B两园区的面积之和为(2x2+6xy)平方米;
(2)(x+y)+(11x﹣y)
=x+y+11x﹣y
=12x(米),
(x﹣y)﹣(x﹣2y)
=x﹣y﹣x+2y
=y(米),
依题意有:
,
解得.
12xy=12×30×10=3600(平方米),
(x+3y)(x+3y)
=x2+6xy+9y2
=900+1800+900
=3600(平方米),
(18﹣12)×3600+(26﹣16)×3600
=6×3600+10×3600
=57600(元).
答:整改后A、B两园区旅游的净收益之和为57600元.
【点评】此题考查整式的混合运算,找出问题中的已知条件和未知量及它们之间的关系是解决问题的关键.
科目:初中数学 来源: 题型:
如图,七年级下册数学教材给出了利用直尺和三角板画平行线的方法,能判
定画出的直线与已知直线平行的是( )
A.∠ABC =∠A′B′C′ B.∠BCA=∠B′C′A′
C.∠CAB=∠C′A′B′ D.∠CAA′=∠C′A′A
查看答案和解析>>
科目:初中数学 来源: 题型:
下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,
,
,无理数的个数有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com