【题目】探究:如图①,在矩形ABCD中,AB=3,AD=4,点P是对角线AC上的一点,过点P分别作AB、AD的平行线,交BC、CD于点M、N,求的值;
应用:如图②,在矩形ABCD中,AB=3,AD=4,点P是对角线AC上的一点,Rt△PEF的两条直角边PE、PF分别交BC、CD于点M、N,则= .
【答案】;
【解析】
试题分析:探究:首先证明PN=MC,由PM∥AB,推出,即,由此即可解决问题.
应用:先过P作PG⊥BC于G,作PH⊥CD于H,判定△PGM∽△PHN,再根据相似三角形的性质以及探究的结论即可解决问题;
试题解析:探究:解:如图①中,
∵四边形ABCD是矩形,
∴∠B=∠DCB=90°,AD=BC=4
∵PM⊥BC,PN⊥CD,
∴∠PMC=∠PNC=90°,
∴四边形PMCN是矩形,
∴PC=CM,
∵∠PMC=∠B=90°,
∴PM∥AB,
∴△CPM∽△CAB,
∴,即,
∵AB=3,BC=4
∴=
应用:解:如图②中,过P作PG⊥BC于G,作PH⊥CD于H,则∠PGM=∠PHN=90°,∠GPH=90°,
∵Rt△PEF中,∠FPE=90°
∴∠GPM=∠HPN
∴△PGM∽△PHN
∴,
由条件可知,=,
∴=.
科目:初中数学 来源: 题型:
【题目】某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的倍;甲、乙两队合作完成工程需要天;甲队每天的工作费用为元、乙队每天的工作费用为元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(0.5,0),有下列结论:
①abc>0; ②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c>0;⑤a﹣b≥m(am-b).
其中所有正确的结论是( )
A. ①②③ B. ①③④ C. ①②③⑤ D. ①③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在高速公路上,从3千米处开始,每隔4千米设置一个限速标志牌,而且从10千米处开始,每隔9千米设置一个速度监控仪,刚好在19千米处同时经过这两种标志.则第三次同时经过这两种标志的地点的千米数为( )
A.32B.55C.91D.127
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com