【题目】如图1,对称轴为直线x= 的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A
(1)求抛物线的解析式;
(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;
(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】
(1)
解:由对称性得:A(﹣1,0),
设抛物线的解析式为:y=a(x+1)(x﹣2),
把C(0,4)代入:4=﹣2a,
a=﹣2,
∴y=﹣2(x+1)(x﹣2),
∴抛物线的解析式为:y=﹣2x2+2x+4;
(2)
解:如图1,设点P(m,﹣2m2+2m+4),过P作PD⊥x轴,垂足为D,
∴S=S梯形+S△PDB= m(﹣2m2+2m+4+4)+ (﹣2m2+2m+4)(2﹣m),
S=﹣2m2+4m+4=﹣2(m﹣1)2+6,
∵﹣2<0,
∴S有最大值,则S大=6;
(3)
解:存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形,
理由是:
分以下两种情况:
①当∠BQM=90°时,如图:
∵∠CMQ>90°,
∴只能CM=MQ.
设直线BC的解析式为:y=kx+b(k≠0),
把B(2,0)、C(0,4)代入得: ,
解得: ,
∴直线BC的解析式为:y=﹣2x+4,
设M(m,﹣2m+4),
则MQ=﹣2m+4,OQ=m,BQ=2﹣m,
在Rt△OBC中,BC= = =2 ,
∵MQ∥OC,
∴△BMQ∽BCO,
∴ ,即 ,
∴BM= (2﹣m)=2 ﹣ m,
∴CM=BC﹣BM=2 ﹣(2 ﹣ m)= m,
∵CM=MQ,
∴﹣2m+4= m,m= =4 ﹣8.
∴Q(4 ﹣8,0).
②当∠QMB=90°时,如图3,
同理可设M(m,﹣2m+4),
过A作AE⊥BC,垂足为E,
∴∠EAB=∠OCB,
∴sin∠EAB= ,
∴ ,
∴BE= ,
过E作EF⊥x轴于F,
sin∠CBO= ,
∴ ,
∴EF= ,
由勾股定理得:BF= = ,
∴OF=2﹣ = ,
∴E( , ),
由A(﹣1,0)和E( , )可得:
则AE的解析式为:y= x+ ,
则直线BC与直线AE的交点E(1.4,1.2),
设Q(﹣x,0)(x>0),
∵AE∥QM,
∴△ABE∽△QBM,
∴ ①,
由勾股定理得:x2+42=2×[m2+(﹣2m+4﹣4)2]②,
由以上两式得:m1=4(舍),m2= ,
当m= 时,x= ,
∴Q(﹣ ,0).
综上所述,Q点坐标为(4 ﹣8,0)或(﹣ ,0).
【解析】(1)由对称轴的对称性得出点A的坐标,由待定系数法求出抛物线的解析式;(2)作辅助线把四边形COBP分成梯形和直角三角形,表示出面积S,化简后是一个关于S的二次函数,求最值即可;(3)画出符合条件的Q点,只有一种,①利用平行相似得对应高的比和对应边的比相等列比例式;②在直角△OCQ和直△CQM利用勾股定理列方程;两方程式组成方程组求解并取舍.
科目:初中数学 来源: 题型:
【题目】已知抛物线的解析式为 .
(1)若抛物线与x轴总有交点,求c的取值范围;
(2)设抛物线与x轴两个交点为A(x1 , 0),B(x2 , 0),且x2>x1 , 若x2﹣x1=5,求c的值;
(3)在(2)的条件下,设抛物线与y轴的交点为C,抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是( )
A.AB=AC
B.AD=BD
C.BE⊥AC
D.BE平分∠ABC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】西宁市教育局在局属各初中学校设立“自主学习日”,规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践;F.其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:
(1)此次抽查的样本容量为 , 请补全条形统计图;
(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?
(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有人;
(2)请你将条形统计图补充完成;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:
5640 6430 6520 6798 7325
8430 8215 7453 7446 6754
7638 6834 7326 6830 8648
8753 9450 9865 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表
组别 | 步数分组 | 频数 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 3 |
E | 9500≤x<10500 | n |
请根据以上信息解答下列问题:
(1)填空:m= , n=;
(2)补全频数发布直方图;
(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;
(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,若我们规定一个新数i,使其满足i2=﹣1(即x2=﹣1方程有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2i=(﹣1)i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4ni=(i4)ni,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么,i+i2+i3+i4+…+i2016+i2017的值为( )
A.0
B.1
C.﹣1
D.i
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;
(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE= DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是( )
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com