精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是(
A. =
B. =
C. =
D. =

【答案】C
【解析】解:(A)∵DE∥BC, ∴△ADE∽△ABC,
,故A错误;
(B)∵DE∥BC,
,故B错误;
(C)∵DE∥BC,
,故C正确;
(D))∵DE∥BC,
∴△AGE∽△AFC,
= ,故D错误;
故选(C)
【考点精析】本题主要考查了相似三角形的判定与性质的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,A,D是半圆上的两点,O为圆心,BC是直径,∠D=35°,求∠OAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.
(1)判断∠ABE与∠ACD的数量关系,并说明理由;
(2)求证:过点A、F的直线垂直平分线段BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).

(1)请直接写出B、C两点的坐标及抛物线的解析式;
(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?
(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:
(1)函数y=|x﹣1|的自变量x的取值范围是
(2)列表,找出y与x的几组对应值.

x

﹣1

0

1

2

3

y

b

1

0

1

2

其中,b=
(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;
(4)写出该函数的一条性质:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BD是矩形ABCD的对角线.

(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).
(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形纸片ABCD中,AB=4,BC=10,E是AD边的中点,把矩形纸片沿过点E的直线折叠,使点A落在BC边上,则折痕EF的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),C(3,1)抛物线y= x2+bx﹣2的图象过C点,交y轴于点D.

(1)在后面的横线上直接写出点D的坐标及b的值: , b=
(2)平移该抛物线的对称轴所在直线l,设l与x轴交于点G(x,0),当OG等于多少时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案