分析 (1)将A(-1,0)、B(3,0)两点代入得到关于a、b的方程组,可求得a、b的值;
(2)由题意设P(x,-x2+2x+3),过点P作x轴的垂线,交直线BC于点Q.先求得直线BC的解析式,则得到Q(x,-x+3),然后列出△BCD的面积与x的关系式,利用配方法可求得点P的横坐标以及△CBD的面积的最大值;
(3)首先求得C点坐标为(0,3),顶点(1,4),E(1,0)则tan∠BDE=$\frac{1}{2}$.①当点M在对称轴的右侧时,作当点N在射线CD上时,如图1,过点N作y轴的垂线,垂足为G,过点M作GN的垂线,垂足为H,则△CNG,△MNH均为等腰直角三角形.设CG=a,用含a的式子表示点M的坐标,然后将点M的坐标代入抛物线的解析式可求得a的值;若点N在射线DC上,如图,过点N作x轴的垂线l,分别过点M、C作GN的垂线,垂足为H、G,则△CNG,△MNH均为等腰直角三角形,同理可求得此时a的值;②当点M在对称轴左侧时,抛物线左侧任意一点K,都有∠KCN<45°.
解答 解:(1)将A(-1,0)、B(3,0)两点代入y=ax2+bx+3得:$\left\{\begin{array}{l}{a-b+3=0}\\{9a+3b+3=0}\end{array}\right.$,解得:a-1,b=2.
∴抛物线的表达式为:y=-x2+2x+3.
(2)由题意设P(x,-x2+2x+3),过点P作x轴的垂线,交直线BC于点Q.
将x=0代入抛物线的解析式得:y=3,
∴点C的坐标为(0,3).
设直线BC的解析式为y=kx+b,将点B,C的坐标代入得:$\left\{\begin{array}{l}{b=3}\\{3k+b=0}\end{array}\right.$,
解得:k=-1,b=3.
∴直线CB解析式:y=-x+3,则Q(x,-x+3)
∴PQ=-x2+2x+3-(-x+3)=-x2+3x.
∴S△BCD=$\frac{1}{2}$PQ•OB=$\frac{1}{2}$×(-x2+3x)×3=-$\frac{3}{2}$(x-$\frac{3}{2}$)2+$\frac{27}{8}$.
∴当x=$\frac{3}{2}$时,S△BCD取最大值,
此时P($\frac{3}{2}$,$\frac{15}{4}$).
(3)∵抛物线y=-(x-3)(x+1)=-x2+2x+3与与y轴交于点C,
∴C点坐标为(0,3),顶点(1,4),E(1,0)
∴tan∠BDE=$\frac{BE}{DE}$=$\frac{1}{2}$.
①当点M在对称轴的右侧时.
(I)作当点N在射线CD上时,如图2,过点N作y轴的垂线,垂足为G,
过点M作GN的垂线,垂足为H,则△CNG,△MNH均为等腰直角三角形.
∵∠CMN=∠BDE,
∴tan∠CMN=tan∠BDE=$\frac{1}{2}$=$\frac{CN}{MN}$.
∴△CNG,△MNH相似比为1:2
设CG=a,则NG=a,NH=NH=2a,
∴M(3a,3+a-2a),即M(3a,3-a),
将点M的坐标代入抛物线的解析式得:-(3a)2+2×3a+3=3-a,解得:a=0(舍去)或a=$\frac{7}{9}$
此时M($\frac{7}{3}$,$\frac{20}{9}$).
(II)若点N在射线DC上,如图3,过点N作x轴的垂线l,分别过点M、C作GN的垂线,垂足为H、G,则△CNG,△MNH均为等腰直角三角形,
∵∠CMN=∠BDE,
∴tan∠CMN=tan∠BDE=$\frac{1}{2}$=$\frac{CN}{MN}$,
∴△CNG与△MNH相似比为1:2
设CG=a,则NG=a,NH=NH=2a,
∴M(a,3-a-2a),即M(a,3-3a),
将点M的坐标代入抛物线的解析式得:-a2+2a+3=3-3a,解得:a=0(舍去)或a=5,此时M(5,12)
②当点M在对称轴左侧时.
∵∠CMN=∠BDE<45°,
∴∠MCN>45°,
∵抛物线左侧任意一点K,都有∠KCN<45°,
∴点M不存在.
综上可知,点M坐标为($\frac{7}{3}$,$\frac{20}{9}$)或(5,12).
点评 本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,二次函数的性质,三角形函数的定义、相似三角形的性质,作辅助线构造相似三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com