【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积为.
【答案】(1)函数的解析式为y=;(2)当k的值为2或4时,△EFA的面积为.
【解析】试题分析:(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;
(2)根据图中的点的坐标表示出三角形的面积,得到关于k的方程,通过解方程求得k的值即可.
试题解析:(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),
∵F为AB的中点,∴F(3,1),
∵点F在反比例函数y= (k>0)的图象上,∴k=3,
∴该函数的解析式为y=;
(2)由题意知E,F两点坐标分别为E(,2),F(3, ),
∴S△EFA=AFBE=×k(3﹣k)=k﹣k2,
∵△EFA的面积为,∴k﹣k2=,
整理,得k2﹣6k+8=0,
解得k1=2,k2=4,
∴当k的值为2或4时,△EFA的面积为.
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,2017年3月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率?
(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成2017年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地后停留了45分钟,立即按原路以另一速度匀速返回,直至与慢车相遇.已知慢车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,则快车从乙地返回时的速度为__________千米/时
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式不能用平方差公式计算的是( )
A.(a+b)(a-b)B.(-a+b)(-a-b)C.(-a+b)(a-b)D.(a+b)( -a + b)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com