【题目】如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E.试猜想CE与BD的数量关系,并说明理由.
【答案】CE=BD
【解析】试题分析:
结合图形和已知条件直观感觉CE=BD,但在原图中确难以证明,说明这道题需要作辅助线.考虑到把角的一边沿角平分线折叠后,会与另一边重合,即若把BC沿BD折叠,则点C会落到BA的延长线上,设这个落点为F,则CE=CF,(如下图),而此时我们再来观察,就发现很容易证得△BAD≌△CAF,从而可得CF=BD,进一步就可得CE=BD.
试题解析:
CE=BD.理由如下:
延长CE交BA的延长线于点F,如图
∵BE平分∠ABC,∴∠1=∠2.
∵CE⊥BD,
∴∠BEC=∠BEF=90°.
又∵BE=BE,
∴△BEC≌△BEF(ASA).
∴CE=FE=CF.
∵∠1+∠4=∠3+∠5=90°,∠4=∠5,
∴∠1=∠3.
又∵∠BAD=∠CAF=90°,AB=AC,
∴△BAD≌△CAF(ASA),
∴BD=CF,
∴CE=CF=BD.
科目:初中数学 来源: 题型:
【题目】(1)一条直线可以把平面分成两个部分(或区域),如图,两条直线可以把平面分成几个部分?三条直线可以把平面分成几个部分?试画图说明.
(2)四条直线最多可以把平面分成几个部分?试画出示意图,并说明这四条直线的位置关系.
(3)平面上有条直线,每两条直线都恰好相交,且没有三条直线交于一点,处于这种位置的条直线分一个平面所成的区域最多,记为,试研究与之间的关系.
思维方法天地
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】动手操作:
(1)如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD= 度;
(2)如图2,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;
(3)灵活应用:请你直接利用以上结论,解决以下列问题:如图3,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏型.如图所示,甲、乙两点分别从直径的两端点 A、B以顺时针、逆时针的方向同时沿圆周运动. 甲运动的路程l(cm)与时间t(s)满足关系:(t≥0),乙以4 cm/s的速度匀速运动,半圆的长度为 21 cm.
(1)甲运动 4 s后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.
(1)求s2与t之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某大楼的顶部树有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度,AB=10米,AE=15米.
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(a,b)与点B(2,2)是关于原点O的对称点,则( )
A.a=﹣2,b=﹣2
B.a=﹣2,b=2
C.a=2,b=﹣2
D.a=2,b=2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com