【题目】观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.
(1)求证:△AEC≌△CDB;
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积;
(3)拓展提升:如图3,∠E=60°,EC=EB=4cm,点O在BC上,且OC=3cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间.
【答案】(1)证明见详解;(2)18;(3)2.5
【解析】
(1)根据题干可知本题考查全等三角形证明,先利用等角的余角相等得到∠EAC=∠BCD,则可根据“AAS”证明△AEC≌△CD。
(2)根据图2和条件,作B'D⊥AC于D,先证明△B'AD≌△A B'D得到B'D=AC=6,
则可根据三角形面积公式计算;
(3)根据图3,利用旋转的性质得∠FOP=120°,OP=OF,
再证明△BOF≌△CPO得到PC=OB=1,
则EP=CE+CP=5,然后计算点P运动的时间t.
(1)∵∠ACB=90°,
∴∠ACE+∠DCB=90°,
∵BD⊥l,AE⊥l,
∴∠AEC=∠BDC=90°,
∴∠EAC+∠ACE=90°,
∴∠EAC=∠DCB,
又∵AC=BC,
∴△AEC≌△CDB(AAS);
(2)如图2,作B'D⊥AC于D,
∵斜边AB绕点A逆时针旋转90°至AB',
∴AB’=AB,∠B’AB=90°,
即∠B′AC+∠BAC=90°,
而∠B+∠CAB=90°,
∴∠B=∠B'AC,
∴△B’AD≌△A B′D(AAS),
∴B′D=AC=6,
∴△A B′C的面积=6×6÷2=18;
(3)如图3,由旋转知,OP=OF,
∵△BCE是等边三角形,
∴∠CBE=∠BCE=60°
∴∠OCP=∠FBO=120°,
∠CPO+∠COP=60°,
∵∠POF=120°,
∴∠COP+∠BOF=60°,
∴∠CPO=∠BOF,在△BOF和△PCO中
∠OBF=∠PCO=120°,∠BOF=∠CPO,OF=OP
∴△BOF≌△PCO,
∴CP=OB,
∵EC=BC=4cm,OC=3cm,
∴OB=BC-OC=1,
∴CP=1,
∴EP=CE+CP=5,
∴点P运动的时间t=5÷2=2.5秒。
科目:初中数学 来源: 题型:
【题目】如图所示,等边.
(1)如图(1),若,现有两点、分别从点、点同时出发,沿三角形的边顺时针运动,已知点的速度为,点的速度为.当点第一次到达点时,、同时停止运动.点,运动______秒后,为等腰三角形.
(2)如图,点位于等边的内部,且.将绕点顺时针旋转,点的对应点为点.
①依题意,补全图形;
②若,,求与的面积比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )
A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C. 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D. 掷一个质地均匀的正六面体骰子,向上的面点数是4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为5的正方形ABCD中,以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形的个数为( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)过点A(1,﹣3)、B(3,﹣3)、C(﹣1,5),顶点为M点.在抛物线上是找一点P使∠POM=90°,则P点的坐标_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个二次函数满足以下条件:
①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);
②对称轴是x=3;
③该函数有最小值是﹣2.
(1)请根据以上信息求出二次函数表达式;
(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM、CN交与F点。
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)(2)两小题的结论是否仍然成立,不要求证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC和△DEF,下列条件中①∠B=∠E=90°,AC=DF;②∠B=∠E,AB=DE,AC=DF;③在Rt△ABC和Rt△DEF中,BC=EF,AC=DF;④∠A=∠D,∠B=∠E,∠C=∠F;⑤∠A=∠D,BC=EF,∠C=∠F,能证明△ABC≌△DEF的是( )
A.③⑤B.①③⑤C.①②③⑤D.①②③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com