【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A. 76° B. 78° C. 80° D. 82°
【答案】B
【解析】如图,分别过K、H作AB的平行线MN和RS,
∵AB∥CD,
∴AB∥CD∥RS∥MN,
∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,
∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),
∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,
∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,
又∠BKC﹣∠BHC=27°,
∴∠BHC=∠BKC﹣27°,
∴∠BKC=180°﹣2(∠BKC﹣27°),
∴∠BKC=78°,
故选:B.
科目:初中数学 来源: 题型:
【题目】大源村在“山上再造一个通城”工作中,计划植树200亩,全村在完成植树40亩后,党的群众路线教育实践活动工作小组加入村民植树活动,并且该活动小组植树的速度是全村植树速度的1.5倍,整个植树过程共用了13天完成.
(1)全村每天植树多少亩?
(2)如果全村植树每天需2000元工钱,党的群众路线教育实践活动工作小组是义务植树,因此实际工钱比计划节约多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ ABC ≌△ ADE ,延长 BC 分别交 AD , DE 于 F , G ,∠ CAD =10°,∠ B =∠ D =25°,∠ EAB =120°.求∠ DFB 和∠ DGB 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的关系,并说明你的理由.
解:BE∥CF.
理由:∵AB⊥BC,BC⊥CD(已知)
∴∠ =∠ =90°( )
∵∠1=∠2( )
∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF.
∴ ∥ .(____________,______________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在五边形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分别为AC、AB、BC的中点.
(1)求证:△EMO≌△OND;
(2)若AB=AC,且∠BAC=40°,当∠DAB等于多少时,四边形ADOE是菱形,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题: (1)已知:如图,线段a、b、c.
求作:ΔABC,使得BC=a,AC=b,AB=c.(保留作图痕迹,不写作法)
(2)求作:∠AOB的平分线OC.(不写作法,保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点E、F分别在平行四边形ABCD的边BC、AD上,BE=DF,点P在边AB上,AP:PB=1:n(n>1),过点P且平行于AD的直线l将△ABE分成面积为S1、S2的两部分,将△CDF分成面积为S3、S4的两部分(如图),下列四个等式:
①
②
③
④
其中成立的有( )
A. ①②④ B. ②③ C. ②③④ D. ③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com