【题目】在五边形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分别为AC、AB、BC的中点.
(1)求证:△EMO≌△OND;
(2)若AB=AC,且∠BAC=40°,当∠DAB等于多少时,四边形ADOE是菱形,并证明.
【答案】(1)证明见解析(2)当∠DAB等于35°时,四边形ADOE是菱形
【解析】试题分析:(1)根据直角三角形斜边中线等于斜边一半得:DN=AB,由中位线定理得:OM=AB,则OM=DN,同理得:ON=ME,再根据外角定理和已知证明其夹角相等,则两三角形全等;
(2)连接AO,当∠DAB等于35°时,四边形ADOE是菱形,如图2,设∠DAB=x°,则∠BND=2x°,易证得OD=OE,AD=AE,因此只要AD=OD,四边形ADOE就是菱形;即∠DAO=∠AOD,列关于x的方程解出即可.
试题解析:证明:(1)∵∠ADB=90°,N是AB的中点,∴DN=AB=AN,∴∠ADN=∠BAD,∵O是AB的中点,M是AC的中点,∴OM是△ABC的中位线,∴OM=AB,OM∥AB,∴∠OMC=∠BAC,同理得:∠BNO=∠BAC,∴∠BNO=∠OMC,∵DN=AB,OM=AB,∴DN=OM,同理得:ME=ON,∵∠BND=∠ADN+∠BAD,∠CME=∠CAE+∠AEM,∴∠BND=2∠BAD,∠CME=2∠CAE,∵∠BAD=∠CAE,∴∠BND=∠CME,∴∠BND+∠BNO=∠CME+∠OMC,即∠DNO=∠EMO,∴△EMO≌△OND;
(2)当∠DAB等于35°时,四边形ADOE是菱形,理由是:
如图2,连接AO,设∠DAB=x°,则∠BND=2x°,∵AB=AC,O是BC的中点,∴AO平分∠BAC,AO⊥BC,∵∠BAC=40°,∴∠BAO=20°,在Rt△ABO中,N是AB的中点,∴ON=AB=AN,∴∠BAO=∠AON=20°,∴∠BNO=40°,由(1)得:ON=AC,DN=AB,∴ON=DN,∴∠NDO=∠NOD=(180°-∠DNO)=90°﹣(2x°+40°)=70°﹣x°,∵∠ADB=∠AEC=90°,∠BAD=∠CAE,AB=AC,∴△ADB≌△AEC,∴AD=AE,由(1)得:△EMO≌△OND,∴OD=OE,∴当AD=OD时,四边形ADOE是菱形,即∠DAO=∠AOD,x+20=70﹣x+20,x=35,∴当∠DAB等于35°时,四边形ADOE是菱形.
科目:初中数学 来源: 题型:
【题目】下列命题中,正确的有( )
①Rt△ABC中,已知两边长分别为3和4,则第三边长为5;
②有一个内角等于其他两个内角和的三角形是直角三角形;
③三角形的三边分别为a,b,C,若a2+c2=b2,那么∠C=90°;
④若△ABC中,∠A:∠B:∠C=1:5:6,则△ABC是直角三角形.
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线AB∥CD.
(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是 .
(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.
(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店欲购进甲、乙两种新款运动服。甲款每套进价350元,乙款每套进价200元。该店计划用不低于7600元且不高于8000元的资金订购甲、乙两款运动服共30套
(1)该店订购这两款运动服,共有哪几种方案?
(2)若该店以甲款每套400元、乙款每套300元的价格全部售出,哪种方案获利最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.
(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?
(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m).
参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com