【题目】已知直线l1:y=﹣ 与直线l2:y=kx﹣ 交于x轴上的同一个点A,直线l1与y轴交于点B,直线l2与y轴的交点为C.
(1)求k的值,并作出直线l2图象;
(2)若点P是线段AB上的点且△ACP的面积为15,求点P的坐标;
(3)若点M、N分别是x轴上、线段AC上的动点(点M不与点O重合),是否存在点M、N,使得△ANM≌△AOC?若存在,请求出N点的坐标;若不存在,请说明理由.
【答案】
(1)解:∵直线l1:y=﹣ x+3与x轴交于点A,
∴令y=0时,x=4,即A(4,0),
将A(4,0)代入直线l2:y=kx﹣ ,得k= ,
直线l2图象如图1所示;
(2)解:设P(a,b),
根据题意得:S△ACP=S△ABC﹣S△PBC= ×(3+ )×4﹣ ×(3+ )a=15,
解得:a= ,
将P( ,b)代入直线l1得:b= ×(﹣ )+3=﹣ +3= ,
∴点P的坐标( , )
(3)解:如图2,作ND⊥x轴于D,
∵AC= = ,△ANM≌△AOC,
∴AM=AC= ,AN=AO=4,MN=OC= ,∠ANM=∠AOC=90°,
∵S△AMN= AMND= ANMN,
∴ND= = = ,
将N的纵坐标y=﹣ 代入直线l2得:x= ,
∴当N的纵坐标为( ,﹣ )时,△ANM≌△AOC
【解析】(1)对于直线l1,令y=0求出x的值,确定出A坐标,代入直线l2求出k的值,作出直线l2图象即可;
(2)设P(a,b),由S△ACP=S△ABC-S△BPC,求出a的值,进而求出b的值,确定出P坐标即可;
(3)如图2,作ND⊥x轴于D,利用勾股定理求出AC的长,由△ANM≌△AOC,得到对应边相等,表示出AM,AN,MN,确定出△AMN为直角三角形,利用面积法求出ND的长,确定出N纵坐标,进而求出横坐标,确定出N坐标即可.
【考点精析】本题主要考查了确定一次函数的表达式和全等三角形的性质的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;全等三角形的对应边相等; 全等三角形的对应角相等才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】体育委员统计了全班同学60秒跳绳的次数,并列出下列人数次数分布表,回答下列问题:
次数x | 人数 |
60≤x<80 | 2 |
80≤x<100 | 5 |
100≤x<120 | 21 |
120≤x<140 | 13 |
140≤x<160 | 8 |
160≤x<180 | 4 |
(1)全班有多少人?
(2)组距、组数是多少?
(3)跳绳次数在100≤x<140范围内同学有多少人,占全班的百分之几(精确到0.01%)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年元旦期间,地铁1号线日乘人数最高达到140000人次,数字140000用科学记数法可表示为( )
A.1.4×104
B.1.4×10﹣5
C.1.4×105
D.1.4×106
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com