【题目】一次函数y=ax+b和y=bx+a的图象可能是( )
A. B. C. D.
【答案】D
【解析】
对于各选项,先确定一条直线的位置得到a和b的符号,然后根据此符号判断另一条直线的位置是否符号要求即可.
A、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以A选项错误;
B、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以B选项错误;
C、若经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,所以直线y=bx+a经过第一、二、四象限,所以C选项错误;
D、若经过第一、二、四象限的直线为y=ax+b,则a<0,b>0,所以直线y=bx+a经过第一、三、四象限,所以D选项正确,
故选D.
科目:初中数学 来源: 题型:
【题目】甲、乙两车先后从“深圳书城”出发,沿相同的路线到距书城240km的某市.因路况原因,甲车行驶的路程y (km)与甲车行驶的时间x (h)的函数关系图象为折线 O-A-B, 乙车行驶的路程y (km)与甲车行驶的时间x(h)的函数关系图象为线段CD.
(1)求线段AB所在直线的函数表达式;
(2)①乙车比甲车晚出发 小时;
②乙车出发多少小时后追上甲车?
(3)乙车出发多少小时后甲、乙两车相距10千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小麦改良品种后平均每公顷增加产量a吨,原来产m吨小麦的一块土地,现在小麦的总产量增加了20吨.
(1)当a=0.8,m=100时,原来和现在小麦的平均每公顷产量各是多少?
(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a、m的式于表示)
(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由边长为的若干个小正方形拼成的方格图,的顶点,,均在小正方形的顶点上.
(1)在图中建立恰当的平面直角坐标系,且使点的坐标为,并写出,两点的坐标;
(2)在(1)中建立的平面直角坐标系内画出关于轴对称的;
(3)求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为_____m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).
(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;
(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;
(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张正方形纸片ABCD对折,使CD与AB重合,得到折痕MN后展开,E为CN上一点,将△CDE沿DE所在的直线折叠,使得点C落在折痕MN上的点F处,连接AF,BF,BD.则下列结论中:①△ADF是等边三角形;②tan∠EBF=2-;③S△ADF=S正方形ABCD;④BF2=DF·EF.其中正确的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com