【题目】如图:在一个边长为1的小正方形组成的方格稿纸上,有A、B、C、D、E、F、G七个点,则在下列任选三个点的方案中可以构成直角三角形的是( )
A.点A、点B、点CB.点A、点D、点G
C.点B、点E、点FD.点B、点G、点E
【答案】C
【解析】
先利用勾股定理求出各边的长,再利用勾股定理的逆定理:如果三边满足,则可组成直角三角形进行判断即可.
A.AB2=1+36=37,AC2=16+25=41,BC2=1+9=10,37+10≠41,不可以构成直角三角形;
B.AD2=16+16=32,AG2=9+36=45,DG2=1+4=5,32+5≠45,不可以构成直角三角形;
C.BE2=36+16=52,BF2=25+25=50,EF2=1+1=2,50+2=52,可以构成直角三角形
D.BG2=25+9=34,BE2=36+16=52,GE2=9+1=10,34+10≠52,不可以构成直角三角形.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.
(1)求证:直线DM是⊙O的切线;
(2)若DF=2,且AF=4,求BD和DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.
(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1 上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.
(1)画出△ABC关于直线n的对称图形△A′B′C′;
(2)直线m上存在一点P,使△APB的周长最小;
①在直线m上作出该点P;(保留画图痕迹)
②△APB的周长的最小值为 .(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).
(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;
(2)△ABC的面积是 .
(3)点P(a+1,b-1)与点C关于x轴对称,则a= ,b= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AB=3,BC=4,AC=5,在直线BC上有P点,使△PAC是以AC为腰的等腰三角形,则BP的长为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,图形的运动只改变图形的位置,不改变图形的形状、大小,运动前后的两个图形全等,翻折就是这样.如图1,将△ABC沿AD翻折,使点C落在AB边上的点C'处,则△ADC≌△ADC'.
尝试解决:(1)如图2,△ABC中,∠C=90°,AC=6,BC=8,将△ABC沿AD翻折,使点C落在AB边上的点C'处,求CD的长.
(2)如图3,在长方形ABCD中,AB=8,AD=6,点P在边AD上,连接BP,将△ABP沿BP翻折,使点A落在点E处,PE、BE分别与CD交于点G、F,且DG=EG.
①求证:PE=DF;
②求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.
(1)求证:BN=DM;
(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中有三点、、,请回答如下问题:
(1)在坐标系内描出点的位置:
(2)求出以三点为顶点的三角形的面积;
(3)在轴上是否存在点,使以三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com