【题目】如图已知∠1与线段a,用直尺和圆规按下列步骤作图(保留作图痕迹,不写做法。)
(1)作等∠A于∠1
(2)在∠A的两边分别作AM=AN=a
(3)连接MN
【答案】(1)图见解析;(2)图见解析;(3)图见解析.
【解析】
(1)如图(见解析),设为,作法如下:①作射线AG;②以O为圆心,以任意长为半径画弧,交OP于点D,交OQ于点E;③以A为圆心,以OD的长为半径画弧,交AG于点B;④以点B为圆心,以DE的长为半径画弧,交前弧于点C;⑤过点C作射线AH,则就是所要作的角;
(2)如图(见解析),以点A为圆心,以a的长为半径画弧,交射线AG于点M,交射线AH于点N,则AM、AN就是所求作的线段;
(3)如图(见解析),连接题(2)中的点M和点N即可得.
(1)如图,设为,作法如下:①作射线AG;②以O为圆心,以任意长为半径画弧,交OP于点D,交OQ于点E;③以A为圆心,以OD的长为半径画弧,交AG于点B;④以点B为圆心,以DE的长为半径画弧,交前弧于点C;⑤过点C作射线AH,则就是所要作的角;
(2)以点A为圆心,以a的长为半径画弧,交射线AG于点M,交射线AH于点N,则AM、AN就是所求作的线段;
(3)连接题(2)中的点M和点N即可得;
(1)、(2)、(3)画图结果如下:
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC
重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3.
(1)求反比例函数的解析式;
(2)求cos∠OAB的值;
(3)求经过C、D两点的一次函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是对角线BD上一点(不与点B、D重合),过点E作EF∥AB,且EF=AB,连接AE、BF、CF。
(1)若DE=DC,求证:四边形CDEF是菱形;
(2)若AB=,BC=3,当四边形ABFE周长最小时,四边形CDEF的周长为__________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在平面直角坐标系中:
(1)画出△ABC关于y轴对称的△DEF(其中D、E、F是A、B、C的对应点)
(2)写出D、E、F的坐标;
(3)求出△DEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,
当顶点C恰好落在y轴上的点D处时,点B落在点E处.
(1)求这个抛物线的解析式;
(2)求平移过程中线段BC所扫过的面积;
(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,O为原点,ABCD的边AB在x轴上,点D在y轴上,点A的坐标为(﹣2,0),AB=6,∠BAD=60°,点E是BC边上一点,CE=3EB,⊙P过A、O、D三点,抛物线y=ax2+bx+c过点A、B、D三点.
(1)求抛物线的解析式;
(2)求证:DE是⊙P的切线;
(3)若将△CDE绕点D顺时针旋转90°,点E的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;
(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B、D、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.
(1)AB=_____;
(2)当∠D=20°时,求∠BOD的度数.
(3)若△ACD与△BCO相似,求AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com