分析 (1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;
(2)根据平行线的性质得到∠COD=∠A.由cos∠A=cos∠FOD=$\frac{OD}{OF}$=$\frac{2}{5}$,设⊙O的半径为R,于是得到$\frac{R}{R+5}$=$\frac{2}{5}$,解得R=$\frac{10}{3}$,根据三角函数的定义即可得到结论.
解答
(1)证明:如图,连结OD.
∵CD=DB,CO=OA,
∴OD是△ABC的中位线,
∴OD∥AB,AB=2OD,
∵DE⊥AB,
∴DE⊥OD,即OD⊥EF,
∴直线EF是⊙O的切线;
(2)解:∵OD∥AB,
∴∠COD=∠A.
在Rt△DOF中,∵∠ODF=90°,
∴cos∠A=cos∠FOD=$\frac{OD}{OF}$=$\frac{2}{5}$,
设⊙O的半径为R,则$\frac{R}{R+5}$=$\frac{2}{5}$,
解得R=$\frac{10}{3}$,
∴AB=2OD=$\frac{20}{3}$.
在Rt△AEF中,∵∠AEF=90°,
∴cos∠A=$\frac{AE}{AF}$=$\frac{AE}{5+\frac{20}{3}}$=$\frac{2}{5}$,
∴AE=$\frac{14}{3}$.
点评 本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.
科目:初中数学 来源: 题型:选择题
| A. | (0,42015) | B. | (0,42014) | C. | (0,32015) | D. | (0,32014) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com