【题目】如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,顶点D恰好落在双曲线y=.若将正方形沿x轴向左平移b个单位长度后,点C恰好落在该双曲线上,则b的值为( )
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】
作DE⊥x轴于E,CF⊥y轴于F,如图,先根据坐标轴上点的坐标特征得到B(0,3),A(1,0),再证明△AOB≌△DEA得到AE=OB=3,DE=OA=1,则D(4,1),同样方法可得C(3,4),接着根据反比例函数图象上点的坐标特征确定k=4,则反比例函数解析式为y=,然后计算当y=4时所对应的自变量,从而可确定b的值.
作DE⊥x轴于E,CF⊥y轴于F,如图,当x=0时,y=﹣3x+3=3,则B(0,3);当y=0时,﹣3x+3=0,解得:x=1,则A(1,0).
∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠2+∠3=90°,而∠1+∠2=90°,∴∠1=∠3.
在△AOB和△DEA中,∵,∴△AOB≌△DEA,∴AE=OB=3,DE=OA=1,∴D(4,1),同样方法可得△AOB≌△BFC,∴CF=OB=3,BF=OA=1,∴C(3,4),而顶点D(4,1)落在双曲线y=上,∴k=4×1=4,∴反比例函数解析式为y=,当y=4时,=4,解得:x=1,∴C点向左平移2个单位恰好落在该双曲线上,即b=2.
故选B.
科目:初中数学 来源: 题型:
【题目】现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;
(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国南水北调中线工程的起点是丹江水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡CD的坡度为:1.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米.参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,≈1.73).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AC相切于点P.
(1)求证:BP平分∠ABC;
(2)若PC=1,AP=3,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
(1)求抛物线的解析式;
(2)当PO+PC的值最小时,求点P的坐标;
(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x﹣2与反比例函数y=(x>0)的图象相交于点M(m,1).
(1)填空:m的值为 ,反比例函数的解析式为 ;
(2)已知点N(n,n),过点N作l1∥x轴,交直线y=x﹣2于点A,过点N作l2∥y轴,交反比例函数y=(x>0)的图象与点B,试用n表示△NAB的面积S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=16cm,DC=12cm,AD=21cm,点P以2cm/s的速度沿DA边由点D向点A运动,同时点Q以1cm/s的速度沿CB边由点C向点B运动,而且当其中一点停止运动时另一点也停止运动。设运功时间为t(s)
(1)用含t的代数式表示下面线段的长度:
①CQ=__________cm ; ②PD=__________cm
③BQ=__________cm ; ④AP=___________cm
(2)当t为_______s时,PQ∥AB
(3)是否存在某一时刻t,使得PQ⊥BD?若存在,求出t值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:
①抛物线y=ax2(a≠0)的图象的顶点一定是原点;
②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;
③AB的长度可以等于5;
④△OAB有可能成为等边三角形;
⑤当-3<x<2时,ax2+kx<b,
其中正确的结论是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com