精英家教网 > 初中数学 > 题目详情
已知:在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是正三角形.动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.
(1)求证:△BMP∽△CPQ;
(2)设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中,当y取最小值时,判断△PQC的形状,并说明理由.
分析:(1)根据等边三角形的性质和已知条件证明三角形相似即可;
(2)由△BMP∽△CQP,可得到BP与CQ的关系,从而转化成y与x的函数关系式;
(3)先利用二次函数求最值,求出y取最小值时x的值和y的最小值,从而确定P、Q的位置,判断出△PQC的形状.
解答:证明:(1)在等边△MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,
∠MPQ=60°,
∴∠BMP+∠BPM=∠BPM+∠QPC=120°.
∴∠BMP=∠QPC.
∴△BMP∽△CQP;
(2)解:∵△BMP∽△CQP,
PC
BM
=
CQ
BP

∵PC=x,MQ=y,
∴BP=4-x,QC=4-y,
x
4
=
4-y
4-x

∴y=
1
4
x2-x+4;
(3)△PQC为直角三角形,
理由是:
∵y=
1
4
(x-2)2+3,
∴当y取最小值时,x=PC=2.
∴P是BC的中点,MP⊥BC而∠MPQ=60°.
∴∠CPQ=30°.
∴∠PQC=90°.
∴△PQC为直角三角形.
点评:主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:在梯形ABCD中,AD∥BC,点E在AB上,点F在DC上,且AD=a,BC=b.
(1)如果点E、F分别为AB、DC的中点,如图.求证:EF∥BC,且EF=
a+b
2

(2)如果
AE
EB
=
DF
EC
=
m
n
,如图,判断EF和BC是否平等,并用a、b、m、n的代数式表示EF.请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在梯形ABCD中,AD∥BC,AB=DC,E,F分别是AB和BC边上的点.
(1)如图①,以EF为对称轴翻折梯形ABCD,使点B与点D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面积S梯形ABCD的值;
(2)如图②,连接EF并延长与DC的延长线交于点G,如果FG=k•EF(k为正数),试猜想BE与CG有何数量关系写出你的结论并证明之.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在梯形ABCD中,AD∥BC,AD=3,BC=5,点E在AB上,且AE:EB=2:3,过点E作EF∥BC交CD于F,求EF的长?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在梯形ABCD中,AD∥BC,AB=DC=5,AD=3.5,sinB=
45
,点E是AB边上一点,BE=3,点P是BC边上的一动点,连接EP,作∠EPF,使得∠EPF=∠B,射线PF与AD边交于点F,与CD的延长线交于点G,设BP=x,DF=y.
(1)求BC的长;
(2)试求y关于x的函数关系式,并写出定义域;
(3)连接EF,如果△PEF是等腰三角形,试求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,点E、F分别是BC和DC的中点,连接AE、EF和BD,AE和BD相交于点G.
(1)求证:四边形AECD是平行四边形;
(2)求证:四边形EFDG是菱形.

查看答案和解析>>

同步练习册答案