精英家教网 > 初中数学 > 题目详情

【题目】已知abc满足(a)20.

(1)abc的值.

(2)abc为边能否构成三角形?若能构成,求出该三角形的周长;若不能,请说明理由.

【答案】(1) a2 b5c3 (2) 5 .

【解析】试题分析:(1)由(a)2≥0 ≥0根据几个非负数的和为0那么每一个非负数都为0进行解答即可;

(2)根据三角形三边关系进行判定即可得.

试题解析:(1)(a)2≥0 ≥0

(a)20

a0b50c30

a2b5c3

(2)ac23555

acb

∴以abc为边能构成三角形,其周长为abc25355.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】12分)如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为am,计算:

1)窗户的面积;

2)窗框的总长;

3)若a1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB=90°AC=3BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点EF,则线段B′F的长为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知C是AB的中点,D是AC的中点,E是BC的中点.

(1)若AB=18cm,求DE的长;(2)若CE=5cm,求DB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一位篮球运动员跳起投篮,球沿抛物线y=﹣ x2+3.5运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米.

(1)球在空中运行的最大高度为多少米?
(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2﹣3x+ 与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E

(1)求A、B的坐标;
(2)求直线BC的解析式;
(3)当线段DE的长度最大时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分別在线段BC、CD上,∠EAF=30°,连接EF.

(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),那么
①∠E′AF度数②线段BE、EF、FD之间的数量关系
(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:直线AB经过点A(0,3)点B( ,0),点M在y轴上,⊙M经过点A、B,交x轴于另一点C.

(1)求直线AB的解析式;
(2)求点M的坐标;
(3)点P是劣弧AC上一个动点,当P点运动时,问:线段PA,PB,PC有什么数量关系?并给出证明.

查看答案和解析>>

同步练习册答案