科目: 来源: 题型:
【题目】已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,A F∥CE,且交BC于点F.
(1)求证:△ABF≌△CDE;
(2)如图,若∠1=65°,求∠B的大小.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:
(1)宣传小组抽取的捐款人数为_____人,请补全条形统计图;
(2)在扇形统计图中,求100元所对应扇形的圆心角的度数;
(3)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC与△A′B′C′中,有下列条件:(1)
,(2)
;(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有( )
A.1组
B.2组
C.3组
D.4组
查看答案和解析>>
科目: 来源: 题型:
【题目】在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.我市区机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A、B两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题:
![]()
(1)A组的频数是 ,本次调查样本的容量是 ;
(2)补全直方图(需标明各组频数);
(3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,点Q为坐标系上任意一点,某图形上的所有点在∠Q的内部(含角的边),这时我们把∠Q的最小角叫做该图形的视角.如图1,矩形ABCD,作射线OA,OB,则称∠AOB为矩形ABCD的视角. ![]()
(1)如图1,矩形ABCD,A(﹣
,1),B(
,1),C(
,3),D(﹣
,3),直接写出视角∠AOB的度数; ![]()
(2)在(1)的条件下,在射线CB上有一点Q,使得矩形ABCD的视角∠AQB=60°,求点Q的坐标;
(3)如图2,⊙P的半径为1,点P(1,
),点Q在x轴上,且⊙P的视角∠EQF的度数大于60°,若Q(a,0),求a的取值范围. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,射线DE绕点D顺时针旋转120°,与直线AC交于点F.![]()
(1)依题意将图1补全;
(2)小华通过观察、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF;
想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互补,可得∠AED与∠AFD互补,由等角对等边,可证DE=DF;
想法3:由等腰三角形三线合一,可得AD是∠BAC的角平分线,由角平分线定理,构造点D到AB,AC的高,利用全等三角形,可证DE=DF….
请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可);
(3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.
查看答案和解析>>
科目: 来源: 题型:
【题目】直线y=﹣3x+3与x轴、y轴分别父于A、B两点,点A关于直线x=﹣1的对称点为点C. ![]()
(1)求点C的坐标;
(2)若抛物线y=mx2+nx﹣3m(m≠0)经过A、B、C三点,求抛物线的表达式;
(3)若抛物线y=ax2+bx+3(a≠0)经过A,B两点,且顶点在第二象限.抛物线与线段AC有两个公共点,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场第一次用10000元购进甲、乙两种商品,销售完成后共获利2200元,其中甲种商品每件进价60元,售价70元;乙种商品每件进价50元,售价65元.
(1)求该商场购进甲、乙两种商品各多少件?
(2)商场第二次以原进价购进甲、乙两种商品,且购进甲、乙商品的数量分别与第一次相同,甲种商品按原售价出售,而乙种商品降价销售,要使第二次购进的两种商品全部售出后,获利不少于1800元,乙种商品最多可以降价多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
摸球的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数 | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.
查看答案和解析>>
科目: 来源: 题型:
【题目】有这样一个问题:探究函数y=﹣
+|x|的图象与性质. 小军根据学习函数的经验,对函数y=﹣
+|x|的图象与性质进行了探究.
下面是小军的探究过程,请补充完整:
(1)函数y=﹣
+|x|的自变量x的取值范围是;
(2)表是y与x的几组对应值
x | ﹣2 | ﹣1.9 | ﹣1.5 | ﹣1 | ﹣0.5 | 0 | 1 | 2 | 3 | 4 | … |
y | 2 | 1.60 | 0.80 | 0 | ﹣0.72 | ﹣1.41 | ﹣0.37 | 0 | 0.76 | 1.55 | … |
在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;![]()
(3)观察图象,函数的最小值是;
(4)进一步探究,结合函数的图象,写出该函数的一条性质(函数最小值除外): .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com