相关习题
 0  348573  348581  348587  348591  348597  348599  348603  348609  348611  348617  348623  348627  348629  348633  348639  348641  348647  348651  348653  348657  348659  348663  348665  348667  348668  348669  348671  348672  348673  348675  348677  348681  348683  348687  348689  348693  348699  348701  348707  348711  348713  348717  348723  348729  348731  348737  348741  348743  348749  348753  348759  348767  366461 

科目: 来源: 题型:

【题目】解答题
(1)解不等式组 并把它的解集在数轴上表示出来.
(2)解方程 =1﹣

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC边上的动点(不与B,C重合),点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1A1D1→…,白甲壳虫爬行的路线是ABBB1→…,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数),那么当黑、白两个甲壳虫各爬行完第2013条棱分别停止在所到的正方体顶点处时,它们之间的距离是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知直线y= x﹣2与x轴交于点A,与y轴交于点C,经过A、C两点的抛物线与轴交于另一点B(1,0).

(1)求该抛物线的解析式.
(2)在直线y= x﹣2上方的抛物线上存在一动点D,连接AD、CD,设点D的横坐标为m,△DCA的面积为S,求S与m的函数关系式,并求出S的最大值.
(3)在抛物线上是否存在一点M,使得以M为圆心,以 为半径的圆与直线AC相切?若存在,请求出点M的坐标;若不存在,请说明理由.
(4)在y轴的正半轴上存在一点P,使∠APB的值最大,请直接写出当∠APB最大时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知线段MN=8,C是线段MN上一动点,在MN的同侧分别作等边△CMD和等边△CNE.
(1)如图①,连接DN与EM,两条线段相交于点H,求证ME=DN,并求∠DHM的度数;

(2)如图②,过点D、E分别作线段MN的垂线,垂足分别为F、G,问:在点C运动过程中,DF+EG的长度是否为定值,如果是,请求出这个定值,如果不是请说明理由;

(3)当点C由点M移到点N时,点H移到的路径长度为(直接写出结果)

查看答案和解析>>

科目: 来源: 题型:

【题目】某校九年级(1)班准备购买大课间活动器材呼啦圈和跳绳,已知购买1根跳绳和2个呼啦圈要35元,购买2根跳绳和1个呼啦圈要25元.
(1)求每根跳绳、每个呼啦圈各多少元?
(2)根据班级实际情况,需购买跳绳和呼啦圈的总数量为30,总费用不超过300元,但不低于280元,请你通过计算求出有几种购买方案,哪种方案费用最低.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点EEFABPQF,连接BF.

(1)求证:四边形BFEP为菱形;

(2)当点EAD边上移动时,折痕的端点P、Q也随之移动;

①当点Q与点C重合时(如图2),求菱形BFEP的边长;

②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为4,求图中阴影部分的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,小华在A处利用高为1.5米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进30米到达C处,又测得顶部E的仰角为60°,求大楼EF的高度.(结果精确到0.1米,参考数据 =1.732)

查看答案和解析>>

同步练习册答案