相关习题
 0  349957  349965  349971  349975  349981  349983  349987  349993  349995  350001  350007  350011  350013  350017  350023  350025  350031  350035  350037  350041  350043  350047  350049  350051  350052  350053  350055  350056  350057  350059  350061  350065  350067  350071  350073  350077  350083  350085  350091  350095  350097  350101  350107  350113  350115  350121  350125  350127  350133  350137  350143  350151  366461 

科目: 来源: 题型:

【题目】第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是【 】

A.扇形甲的圆心角是72°

B.学生的总人数是900人

C.丙地区的人数比乙地区的人数多180人

D.甲地区的人数比丙地区的人数少180人

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017江苏省无锡市,第25题,10分)操作:如图1,P是平面直角坐标系中一点(x轴上的点除外),过点PPCx轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.

(1)点Pab)经过T变换后得到的点Q的坐标为 ;若点M经过T变换后得到点N(6,),则点M的坐标为

(2)A是函数图象上异于原点O的任意一点,经过T变换后得到点B

①求经过点O,点B的直线的函数表达式;

②如图2,直线ABy轴于点D,求OAB的面积与OAD的面积之比.

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是(  )
A.抛物线开口向下
B.抛物线经过点(2,3)
C.抛物线的对称轴是直线x=1
D.抛物线与x轴有两个交点

查看答案和解析>>

科目: 来源: 题型:

【题目】学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数 (单位:分)及方差s2如表所示:

7

8

8

7

s2

1

1.2

1

1.8

如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是(  )
A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.

(1)求抛物线的解析式;
(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF= ,求点Q的坐标;
(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.

(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;
(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)
②是否存在满足条件的点P,使得PC= ?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.

(1)直接写出小明所走路程s与时间t的函数关系式;
(2)小明出发多少时间与爸爸第三次相遇?
(3)在速度都不变的情况下,小明希望比爸爸早20min到达公园,则小明在步行过程中停留的时间需作怎样的调整?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于点O,OC=1,以点O为圆心OC为半径作半圆.

(1)求证:AB为⊙O的切线;
(2)如果tan∠CAO= ,求cosB的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y= x+2与双曲线相交于点A(m,3),与x轴交于点C.

(1)求双曲线解析式;
(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.

查看答案和解析>>

同步练习册答案