相关习题
 0  350003  350011  350017  350021  350027  350029  350033  350039  350041  350047  350053  350057  350059  350063  350069  350071  350077  350081  350083  350087  350089  350093  350095  350097  350098  350099  350101  350102  350103  350105  350107  350111  350113  350117  350119  350123  350129  350131  350137  350141  350143  350147  350153  350159  350161  350167  350171  350173  350179  350183  350189  350197  366461 

科目: 来源: 题型:

【题目】如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件: , 可以使得△FDB与△ADE相似.(只需写出一个)

查看答案和解析>>

科目: 来源: 题型:

【题目】BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为(
A. 或2
B. 或2
C. 或2
D. 或2

查看答案和解析>>

科目: 来源: 题型:

【题目】定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= x2的解为( )#N.

A.0或
B.0或2
C.1或
D.
或﹣

查看答案和解析>>

科目: 来源: 题型:

【题目】一次函数y=ax+b与反比例函数y= ,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是( )

A.(﹣2,1)
B.(﹣1,1)
C.(1,﹣2)
D.(﹣1,﹣2)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.
(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);
(Ⅱ)说明直线与抛物线有两个交点;
(Ⅲ)直线与抛物线的另一个交点记为N.
(ⅰ)若﹣1≤a≤﹣ ,求线段MN长度的取值范围;
(ⅱ)求△QMN面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.

(Ⅰ)若△PCD是等腰三角形时,求AP的长;
(Ⅱ)若AP= ,求CF的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:

使用次数

0

1

2

3

4

5(含5次以上)

累计车费

0

0.5

0.9

a

b

1.5

同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:

使用次数

0

1

2

3

4

5

人数

5

15

10

30

25

15

(Ⅰ)写出a,b的值;
(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明在某次作业中得到如下结果: sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°≈( 2+( 2=1.
据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.

查看答案和解析>>

同步练习册答案