科目: 来源: 题型:
【题目】为庆祝中国共产党建党90周年,6月中旬我市某展览馆进行党史展览,把免费参观票分到学校.展览馆有2个验票口A、B(可进出),另外还有2个出口C、D(不许进).小张同学凭票进入展览大厅,参观结束后离开.
(1)小张从进入到离开共有多少种可能的进出方式?(要求用列表或树状图)
(2)小张不从同一个验票口进出的概率是多少? ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向向点B匀速运动,若y=AE2﹣EF2 , 则y与动点F的运动时间x(0≤x≤6)秒的函数关系式为 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】我市某中学组织学生进行“低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成A、B、C、D、E五个等级,并绘制如图的统计图(不完整)统计成绩.若扇形的半径为2cm,则C等级所在的扇形的面积是cm2 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】相传古印度一座梵塔圣殿中,铸有一片巨大的黄铜板,之上树立了三米高的宝石柱,其中一根宝石柱上插有中心有孔的64枚大小两两相异的一寸厚的金盘,小盘压着较大的盘子,如图,把这些金盘全部一个一个地从1柱移到3柱上去,移动过程不许以大盘压小盘,不得把盘子放到柱子之外.移动之日,喜马拉雅山将变成一座金山.
设h(n)是把n个盘子从1柱移到3柱过程中移动盘子之最少次数
n=1时,h(1)=1;
n=2时,小盘→2柱,大盘→3柱,小盘从2柱→3柱,完成.即h(2)=3;
n=3时,小盘→3柱,中盘→2柱,小盘从3柱→2柱.[即用h(2)种方法把中、小两盘移到2柱,大盘3柱;再用h(2)种方法把中、小两盘从2柱3柱,完成;
我们没有时间去移64个盘子,但你可由以上移动过程的规律,计算n=6时,h(6)=( )![]()
A.11
B.31
C.63
D.127
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,用高为6cm,底面直径为4cm的圆柱A的侧面积展开图,再围成不同于A的另一个圆柱B,则圆柱B的体积为( ) ![]()
A.24πcm3
B.36πcm3
C.36cm3
D.40cm3
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,抛物线y=ax2+
+c经过原点O和A(4,2),与x轴交于点C,点M、N同时从原点O出发,点M以2个单位/秒的速度沿y轴正方向运动,点N以1个单位/秒的速度沿x轴正方向运动,当其中一个点停止运动时,另一点也随之停止.![]()
(1)求抛物线的解析式和点C的坐标;
(2)在点M、N运动过程中,
①若线段MN与OA交于点G,试判断MN与OA的位置关系,并说明理由;
②若线段MN与抛物线相交于点P,探索:是否存在某一时刻t,使得以O、P、A、C为顶点的四边形是等腰梯形?若存在,请求出t值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下面材料,然后解答问题:
在平面直角坐标系中,以任意两点P(x1 , y1),Q(x2 , y2)为端点的线段的中点坐标为(
,
).如图,在平面直角坐标系xOy中,双曲线y=
(x<0)和y=
(x>0)的图象关于y轴对称,直线y=
+
与两个图象分别交于A(a,1),B(1,b)两点,点C为线段AB的中点,连接OC、OB.![]()
(1)求a、b、k的值及点C的坐标;
(2)若在坐标平面上有一点D,使得以O、C、B、D为顶点的四边形是平行四边形,请求出点D的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,以AB为直径的⊙O是△ADC的外接圆,过点O作PO⊥AB,交AC于点E,PC的延长线交AB的延长线于点F,∠PEC=∠PCE. ![]()
(1)求证:FC为⊙O的切线;
(2)若△ADC是边长为a的等边三角形,求AB的长.(用含a的代数式表示)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证: ![]()
(1)△ABF≌△DEA;
(2)DF是∠EDC的平分线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com