科目: 来源: 题型:
【题目】如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.
(1)在图中画出△A1B1C1;
(2)点A1,B1,C1的坐标分别为 、 、 ;
(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,点C在AOB的一边OA上,过点C的直线DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度数;
(2)求证:CG平分OCD;
(3)当O为多少度时,CD平分OCF,并说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标中,点
的坐标为
,点
的坐标为
,将线段
向右平移
个单位长度得到线段
(点
和点
分别是点
和点
的对应点),连接
、
,点
是线段
的中点.
![]()
![]()
备用图![]()
(1)求点
的坐标;
(2)若长方形
以每秒
个单位长度的速度向正下方运动,(点
、
、
、
、
分别是点
、
、
、
、
的对应点),当
与
轴重合时停止运动,连接
、
,设运动时间为
妙,请用含
的式子表示三角形
的面积
(不要求写出
的取值范围);
(3)在(2)的条件下,连接
、
,问是否存在某一时刻
,使三角形
的面积等于三角形
的面积?若存在,请求出
值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在四边形ABCD中,点E为AB延长线上一点,连接
并延长交AD延长线于点
,
,
.(1)求证:
;
图1![]()
(2)如图2,连接
交
于点
,连接
,若
为
的角平分线,
为
的角平分线,过点
作
交
于点
, 求证:
;
图2
备用图![]()
(3)在(2)的条件下,若
,
,求
的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】在正方形ABCD中,DE为正方形的外角∠ADF的角平分线,点G在线段AD上,过点G作PG⊥DE于点P,连接CP,过点D作DQ⊥PC于点Q,交射线PG于点H.![]()
(1)如图1,若点G与点A重合.
①依题意补全图1;
②判断DH与PC的数量关系并加以证明;
(2)如图2,若点H恰好在线段AB上,正方形ABCD的边长为1,请写出求DP长的思路(可以不写出计算结果).
查看答案和解析>>
科目: 来源: 题型:
【题目】寒假将近,某学校将组织七年级部分同学去亚布力参加“冰雪冬令营”.学校提前给所去学生预定房间,如果在所预定的房间里每间住
人,则有
人无法安排;每间住
人,则空出
张床.
(1)本次参加“冰雪冬令营”的学生总数为多少人?
(2)冬令营结束时,学校准备给这些同学每人送一个售价为
元的
或
种纪念品,但实际购买时发现,
、
两种商品的售价都有变动,
种商品打八折出售,
种商品的价钱比原售价提高了
,若实际购买
种商品费用比购买
种商品费用的
倍多
元,那么此次活动中学校购买
种商品多少个?
查看答案和解析>>
科目: 来源: 题型:
【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:
(1)二次函数和反比例函数的关系式.
(2)弹珠在轨道上行驶的最大速度.
![]()
【答案】(1)v=
(2<t≤5) (2)8米/分
【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;
(2)把t=2代入(1)中二次函数解析式即可.
详解:(1)v=at2的图象经过点(1,2),
∴a=2.
∴二次函数的解析式为:v=2t2,(0≤t≤2);
设反比例函数的解析式为v=
,
由题意知,图象经过点(2,8),
∴k=16,
∴反比例函数的解析式为v=
(2<t≤5);
(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,
∴弹珠在轨道上行驶的最大速度在2秒末,为8米/分.
点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.
【题型】解答题
【结束】
24
【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
(1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三角形
中,
,垂足为点
,直线
过点
,且
,点
为线段
上一点,连接
,∠BCG与∠BCE的角平分线CM、CN分别交
于点M、N,若
,则
=_________°.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.
![]()
(1)求证:BG=CF.
(2)请你判断BE+CF与EF的大小关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com