相关习题
 0  350760  350768  350774  350778  350784  350786  350790  350796  350798  350804  350810  350814  350816  350820  350826  350828  350834  350838  350840  350844  350846  350850  350852  350854  350855  350856  350858  350859  350860  350862  350864  350868  350870  350874  350876  350880  350886  350888  350894  350898  350900  350904  350910  350916  350918  350924  350928  350930  350936  350940  350946  350954  366461 

科目: 来源: 题型:

【题目】如图,经过坐标原点的抛物线C1:y=ax2+bx与x轴的另一交点为M,它的顶点为点A,将C1绕原点旋转180°,得到抛物线C2 , C2与x轴的另一交点为N,顶点为点B,连接AM,MB,BN,NA,当四边形AMBN恰好是矩形时,则b的值( )

A.2
B.﹣2
C.2
D.﹣2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中点A在y轴的左侧,点C在x轴的下方,且OA=OC=5.

(1)求抛物线对应的函数解析式;
(2)点P为抛物线对称轴上的一动点,当PB+PC的值最小时,求点P的坐标;
(3)在(2)条件下,点E为抛物线的对称轴上的动点,点F为抛物线上的动点,以点P、E、F为顶点作四边形PEFM,当四边形PEFM为正方形时,请直接写出坐标为整数的点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】根据要求回答问题:
(1)发现
如图1,直线l1∥l2 , l1和l2的距离为d,点P在l1上,点Q在l2上,连接PQ,填空:PQ长度的最小值为.

(2)应用
如图2,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M在线段AD上,AM=3MD,点N在直线BC上,连接MN,求MN长度的最小值

(3)拓展
如图3,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M在线段AD上任意一点,连接MC并延长到点E,使MC=CE,以MB和ME为边作平行四边形MBNE,请直接写出线段MN长度的最小值

查看答案和解析>>

科目: 来源: 题型:

【题目】如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于“倍根方程”的说法:①方程x2-3x+2=0是“倍根方程”;②若(x-2)(mx+n)=0是“倍根方程”,则4m2+5mn+n2=0;③若pq=2,则关于x的方程px2+3x+q=0是“倍根方程”;④若方程ax2+bx+c=0是“倍根方程”,且5a+b=0,则方程ax2+bx+c=0的一个根为.其中正确的是____(填序号).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC的三边ABBCCA长分别为405060.其三条角平分线交于点O,则SABOSBCOSCAO=

查看答案和解析>>

科目: 来源: 题型:

【题目】有理数a,b在数轴上的对应点如图所示,则下列式子中错误的是(

A. a+b<0 B. a-b<0

C. -a<-b D. |a-b|=b-a

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形ABCD的顶点A、D在坐标轴上,其坐标分别为(2,0),(0,4),对角线AC⊥x轴.
(1)求直线DC对应的函数解析式
(2)若反比例函数y= (k>0)的图象经过DC的中点M,请判断这个反比例函数的图象是否经过点B,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某厂生产一种工具,据市场调查,若按每个工具280元销售时,每月可销售300个,若销售单价每降低1元,每月可多售出2个,据统计,每个工具的固定成本Q(元)与月销售y(个)满足如下关系:

月销量y(个)

100

160

240

320

每个工具的固定成本Q(元)

96

60

40

30


(1)写出月产销量y(个)与销售单价x(元)之间的函数关系式;
(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;
(3)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,甲乙两人在游泳池A处发现游泳池中的P处有人求救,甲立即跳入池中去救人,速度为1米/秒,乙以3.5米/秒的速度沿游泳池边跑到距A不远处的B处,捡起一个游泳圈再跳入池中去救人,甲游了20秒到达P处,两秒后乙到达P处.若∠PAB与∠PBC互余,且cos∠PBC= ,求乙的游泳速度.

查看答案和解析>>

科目: 来源: 题型:

【题目】四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为的小正方形EFGH,已知AMRtABM较长直角边,AM=EF,则正方形ABCD的面积为(

A. B. C. D.

查看答案和解析>>

同步练习册答案