相关习题
 0  350974  350982  350988  350992  350998  351000  351004  351010  351012  351018  351024  351028  351030  351034  351040  351042  351048  351052  351054  351058  351060  351064  351066  351068  351069  351070  351072  351073  351074  351076  351078  351082  351084  351088  351090  351094  351100  351102  351108  351112  351114  351118  351124  351130  351132  351138  351142  351144  351150  351154  351160  351168  366461 

科目: 来源: 题型:

【题目】如图在△ABCC=90°,AD平分∠BAC,DEABE,则下列结论:AD平分∠CDE;②∠BAC=BDE;DE平分∠ADB;BE+AC=AB.其中正确的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是(  )

A. A与D互为余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC为等腰直角三角形,∠ABC=90°,AB=BC,点Ax轴的负半轴上,点By轴上的一个动点,点C在点B的上方,

(1)如图1当点A的坐标为(﹣3,0),点B的坐标为(0,1)时,求点C的坐标;

(2)设点A的坐标为(a,0),点B的坐标为(0,b).过点CCDy轴于点D,在点B运动过程中(不包含ABC的一边与坐标轴重合的情况),猜想线段OD的长与a、b的数量关系,并说明理由;

(3)在(2)的条件下如图4,当x轴平分∠BAC时,BCx轴于点E,过点作CFx轴于点F.说明此时线段CFAE的数量关系(用含a、b的式子表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知ABC是等边三角形,在直线AC、直线BC上分别取点D和点且AD=CE,直线BD、AE相交于点F.

(1)如图1所示,当点D、点E分别在线段CA、BC上时,求证:BD=AE;

(2)如图2所示,当点D、点E分别在CA、BC的延长线时,求∠BFE的度数;

(3)如图3所示,在(2)的条件下,过点CCMBD,交EF于点M,若DF:AF:AM=1:2:4,BC=12,求CE的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形ABCD中,PAD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PECD相交于点O,且OE=OD.

(1)求证:PE=DH;

(2)若AB=10,BC=8,求DP的长.

【答案】1见解析;2

【解析】试题分析:(1) 先证明DOP≌△EOH再利用等量代换得到PE=DH.

(2) DP=x RtBCH中,先用 x表示三角形三边,利用勾股定理列式解方程.

试题解析:

1)解:证明:OD=OED=∠E=90°DOP=∠EOH

∴△DOP≌△EOH

OP=OH

PO+OE=OH+OD

PE=DH.

2)解:设DP=x,则EH=xBH=10﹣x

CH=CDDH=CDPE=10﹣8﹣x=2+x

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2

x=,

DP=

型】解答
束】
25

【题目】某文教店老板到批发市场选购A,B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.

(1)求A,B两种品牌套装每套进价分别为多少元?

(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AB=AC=AD,CAD=60°,分别连接BC、BD,作AE平分∠BACBD于点E,若BE=4,ED=8,则DF=_____

查看答案和解析>>

科目: 来源: 题型:

【题目】解不等式组,并把解集在数轴上表示出来.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公交公司有A,B型两种客车,它们的载客量和租金如下表:

A

B

载客量(/)

45

30

租金(/)

400

280

红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:

(1)用含x的式子填写下表:

车辆数()

载客量()

租金()

A

x

45x

400x

B

5-x

(2)若要保证租车费用不超过1900元,求x的最大值;

(3)(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.
(1)甲、乙两车单独完成任务分别需要多少天?
(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在实践中学习:
(1)如图1所示:已知ABCD,ABD=115°,根据 可得出:∠BDC的度数是
(2)如图2所示:已知ABCD,ABC=25°EDC=40°,求∠BED的度数.

(3)如图3所示:已知MANC,试确定∠A、B、C和∠E、F的关系,并说明理由.
(4)如图4所示:已知ABCD,ABE=αFCD=βCFE=γ,且BEEF,试确定α、β、γ的关系,请说明理由.

查看答案和解析>>

同步练习册答案