相关习题
 0  350992  351000  351006  351010  351016  351018  351022  351028  351030  351036  351042  351046  351048  351052  351058  351060  351066  351070  351072  351076  351078  351082  351084  351086  351087  351088  351090  351091  351092  351094  351096  351100  351102  351106  351108  351112  351118  351120  351126  351130  351132  351136  351142  351148  351150  351156  351160  351162  351168  351172  351178  351186  366461 

科目: 来源: 题型:

【题目】某苹果生产基地,用30名工人进行采摘或加工苹果 ,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4 000元;加工成罐头出售每吨获利10 000元.采摘的工人每人可采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.

(1)yx的函数关系式;

(2)如何分配工人才能获利最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.

(1)求证:AF=DF;
(2)若BC=2AB,DE=1,∠ABC=60°,求FG的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校有1500名学生参加首届“我爱我们的课堂”为主题的图片制作比赛,赛后随机抽取部分参赛学生的成绩进行整理并制作成图表如图:

分数段

频数

频率

60≤x<70

40

0.40

70≤x<80

35

b

80≤x<90

a

0.15

90≤x<100

10

0.10

频率分布统计表

请根据上述信息,解答下列问题:
(1)分别求出a、b的值;
(2)请补全频数分布直方图;
(3)如果将比赛成绩80分以上(含80分)定为优秀,那么优秀率是多少?并且估算该校参赛学生获得优秀的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y= x与双曲线y= 相交于A、B两点,BC⊥x轴于点C(﹣4,0).

(1)求A、B两点的坐标及双曲线的解析式;
(2)若经过点A的直线与x轴的正半轴交于点D,与y轴的正半轴交于点E,且△AOE的面积为10,求CD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.

(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);

(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】下面是某同学对多项式(x24x+2)(x24x+6+4进行因式分解的过程.

解:设x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列问题:

1)该同学第二步到第三步运用了因式分解的_______

A.提取公因式

B.平方差公式

C.两数和的完全平方公式

D.两数差的完全平方公式

2)该同学因式分解的结果是否彻底?________.(填彻底不彻底)若不彻底,请直接写出因式分解的最后结果_________

3)请你模仿以上方法尝试对多项式(x22x)(x22x+2+1进行因式分解.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知△ABC,且∠ACB=90°.

(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):
①以点A为圆心,BC边的长为半径作⊙A;
②以点B为顶点,在AB边的下方作∠ABD=∠BAC.
(2)请判断直线BD与⊙A的位置关系(不必证明).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为的大正方形,两块是边长都为的小正方形,五块是长为、宽为的全等小矩形,且> .(以上长度单位:cm)

(1)观察图形,可以发现代数式可以因式分解为

(2)若每块小矩形的面积为10,四个正方形的面积和为58,试求图中所有裁剪线(虚线部分)长之和.

查看答案和解析>>

科目: 来源: 题型:

【题目】全球气候变暖导致-些冰川融化并消失在冰川|消失12年后,一种低等植物苔藓,就开始在岩石上生长每一个苔藓都会长成近似的圆形苔藓的直径和其生长年限近似地满足如下的关系式:d=7 (t≥12),其中d表示苔藓的直径,单位是厘米,t代表冰川消失的时间(单位:年)

(1)计算冰川消失16年后苔藓的直径为多少厘米?

(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?

查看答案和解析>>

科目: 来源: 题型:

【题目】10分)某地区为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.例如,第一个月用水16吨,需交水费17.8元,第二个月用水20吨,需交水费23元.

(1)求每吨水的基础价和调节价;

(2)设每月用水量为n吨,应交水费为m元,写出m与n之间的函数解析式;

(3)若某月用水12吨,应交水费多少元?

查看答案和解析>>

同步练习册答案