相关习题
 0  351601  351609  351615  351619  351625  351627  351631  351637  351639  351645  351651  351655  351657  351661  351667  351669  351675  351679  351681  351685  351687  351691  351693  351695  351696  351697  351699  351700  351701  351703  351705  351709  351711  351715  351717  351721  351727  351729  351735  351739  351741  351745  351751  351757  351759  351765  351769  351771  351777  351781  351787  351795  366461 

科目: 来源: 题型:

【题目】已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:

甲:(1)以点C为圆心,AB长为半径画弧;

(2)以点A为圆心,BC长为半径画弧;

(3)两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1)

乙:(1)连接AC,作线段AC的垂直平分线,交AC于点M;

(2)连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).

对于两人的作业,下列说法正确的是(  )

A. 两人都对 B. 两人都不对 C. 甲对,乙不对 D. 甲不对,乙对

查看答案和解析>>

科目: 来源: 题型:

【题目】如图①,OP为一墙面,它与地面OQ垂直,有一根木棒AB如图放置,点C是它的中点,现在将木棒的A点在OP上由A点向下滑动,点B由O点向OQ方向滑动,直到AB横放在地面为止.

(1)在AB滑动过程中,点C经过的路径可以用下列哪个图象来描述( )

(2)若木棒长度为2m,如图②射线OM与地面夹角∠MOQ=60°,当AB滑动过程中,与OM并于点D,分别求出当AD= 、AD=1、AD= 时,OD的值.

(3)如图③,是一个城市下水道,下水道入口宽40cm,下水道水平段高度为40cm,现在要想把整根木棒AB通入下水道水平段进行工作,那么这根木棒最长可以是(cm)(直接写出结果,结果四舍五入取整数).

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:头尼一拉,中间相加,满十进一.例如:①.计算过程:两数拉开,中间相加,即,最后结果;②.计算过程:两数分开,中间相加,即,满十进一,最后结果

(1)计算:① _____

(2)若某一个两位数十位数字是,个位数字是,将这个两位数乘,得到一个三位数,则根据上述的方法可得,该三位数百位数字是____,十位数字是_____ 个位数字是_____ ( 用含的化数式表示)

(3)请你结合(2)利用所学的知识解释其中原理.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知△ABE中,∠BAE=90°,以AB为直径作⊙O,与BE边相交于点C,过点C作⊙O的切线CD,交AE于点D.
(1)求证:D是AE的中点;
(2)求证:AE2=ECEB.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点OABC内一点,连接OBOC,并将ABOBOCAC的中点DEFG依次连接得到四边形DEFG

1)求证:四边形DEFG是平行四边形;

2)若OBOC,∠EOM和∠OCB互余,OM3,求DG的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.

(1)弦AB=(结果保留根号);
(2)当∠D=20°时,求∠BOD的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.24, ≈2.45)

查看答案和解析>>

科目: 来源: 题型:

【题目】某治安巡警分队常常在一条东西走向的街道上巡逻一天 下午,该巡警分队驾驶电动小汽车从位于这条街道上的某岗亭出发巡逻,如果规定向东为正,向西为负,他们行驶里程(单位: km)如下:问:

(1)这辆小汽车完成巡逻后位于该岗亭的那一侧?距离岗亭有多少千米?

(2)已知这种电动小汽车平均每千米耗电度,则这天下午小汽车共耗电多少度?

查看答案和解析>>

科目: 来源: 题型:

【题目】xy定义一种新运算T,规定:Txy)=(其中ab均为非零常数),这里等式右边是通常的四则运算,例如:T01)=b,已知T11)=2.5T4,﹣2)=4

1)求ab的值;

2)若关于m的不等式组恰好有2个整数解,求实数P的取值范围.

查看答案和解析>>

同步练习册答案