科目: 来源: 题型:
【题目】湖州奥体中心是一座多功能的体育场,目前体育场内有一块长80m,宽60m的长方形空地,体育局希望将其改建成花园小广场,设计方案如图,阴影区域是面积为192平方米的绿化区(四块相同的直角三角形),空白区域为活动区,且四周出口宽度一样.
![]()
(1)体育局先对四个绿化区域进行绿化,在完成工作量的
后,施工方进行了技术改进,每天的绿化面积是原计划的两倍,结果提前四天完成四个绿化区域的改造,问原计划每天绿化多少平方米?
(2)老师提出了一个问题:你能不能求出活动区的出口宽度是多少呢?
![]()
请你根据小丽的方法求出活动区的出口宽度,并把过程写下来.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,平面直角坐标系x0y中,点A(0,2),B(1,0),C(﹣4,0)点D为射线AC上一动点,连结BD,交y轴于点F,⊙M是△ABD的外接圆,过点D的切线交x轴于点E.
(1)判断△ABC的形状;
(2)当点D在线段AC上时,
①证明:△CDE∽△ABF;
②如图2,⊙M与y轴的另一交点为N,连结DN、BN,当四边形ABND为矩形时,求tan∠DBC;
(3)点D在射线AC运动过程中,若
,求
的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某校5月组织了学生参加“学习强国”知识竞赛,从中抽取了部分学生成绩(满分为100分)进行统计,绘制如下不完整的频数直方图,若将频数直方图划分的五组从左至右依次记为A、B、C、D、E,绘制如下扇形统计图,请你根据图形提供的信息,解答下列问题:
(1)频数分布直方图中,A组的频数a= ,并补全频数直方图;
(2)扇形统计图中,D部分所占的圆心角n= 度;
(3)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1:
,求旗杆AB的高度(
≈1.7,结果精确到个位).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′ ,如图①所示,∠BAB′ =θ,
,我们将这种变换记为[θ,n] .
(1)如图①,对△ABC作变换[60°,
]得到△AB′C′ ,则
:
= ;直线BC与直线B′C′所夹的锐角为 度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、
在同一直线上,且四边形ABB′C′为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得到△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】六张形状大小完全相同的小长方形卡片,分两种不同形式不重叠的放在一个底面长为m,宽为n的长方形盒子底部(如图①、图②),盒子底面未被卡片覆盖的部分用阴影表示,设图①中阴影图形的周长为
,图②中两个阴影部分图形的周长和为
则用含m、n的代数式
=_______,
=_______,若
,则m=_____(用含n的代数式表示)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.
![]()
(1)填空:折线OABC表示赛跑过程中 的路程与时间的关系,线段OD表示赛跑过程中 的路程与时间的关系.赛跑的全程是 米.
(2)兔子在起初每分钟跑 米,乌龟每分钟爬 米.
(3)乌龟用了 分钟追上了正在睡觉的兔子.
(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?
查看答案和解析>>
科目: 来源: 题型:
【题目】如果第一次租用2辆A型车和1辆B型车装运水果,一次运货10吨;第二次租用1辆A型车和2辆B型车装水果,一次运货11吨(两次运货都是满载)
①求每辆A型车和B型车满载时各装水果多少吨?
②现有31吨水果需运出,计划同时租用A型车和B型车一次运完,且每辆车都恰好装满,请设计出有哪几种租车方案?
③若A型车每辆租金200元,B型车每辆租金300元,问哪种租车方案最省钱,最省钱的方案总共租金多少钱?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P的坐标是______.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】【阅读理解】
我们知道,1+2+3+…+n=
,那么12+22+32+…+n2结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为
,即n2,这样,该三角形数阵中共有
个圆圈,所有圆圈中数的和为12+22+32+…+n2.
![]()
![]()
【规律探究】
将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .
【解决问题】
根据以上发现,计算:
的结果为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com