相关习题
 0  352992  353000  353006  353010  353016  353018  353022  353028  353030  353036  353042  353046  353048  353052  353058  353060  353066  353070  353072  353076  353078  353082  353084  353086  353087  353088  353090  353091  353092  353094  353096  353100  353102  353106  353108  353112  353118  353120  353126  353130  353132  353136  353142  353148  353150  353156  353160  353162  353168  353172  353178  353186  366461 

科目: 来源: 题型:

【题目】如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.

(1)求新传送带AC的长度;

(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物是否需要挪走,并说明理由.

【答案】(1)5.6m;(2)应挪走.

【解析】试题解析:试题分析:(1)在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在RtACD中,求出AC的长.
(2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长.然后判断PC的值是否大于2米即可.

试题解析:(1)如图,
RtABD中,AD=ABsin45°=4
RtACD中,
∵∠ACD=30°
AC=2AD=8.
即新传送带AC的长度约为8米;
(2)结论:货物MNQP不用挪走.
解:在RtABD中,BD=ABcos45°=4=4.
RtACD中,CD=AD=4
CB=CD-BD=4-4≈2.8.
PC=PB-CB5-2.8=2.2>2,
货物MNQP不应挪走.

型】解答
束】
8

【题目】如图有一圆锥形粮堆,其主视图是边长为6m的正三形ABC。

(1)求该圆锥形粮堆的侧面积。

(2)母线AC的中点P处有一老鼠正在偷吃粮食,小猫从B处沿圆锥表面去偷袭老鼠,求小猫经过的最短路程。 (结果不取近似数)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.

(1)求新传送带AC的长度;

(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物是否需要挪走,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,Rt△ABC中,∠BAC=60°,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.

(1)求∠CAD的度数;

(2)若OA = 2,求阴影部分的面积(结果保留π).

【答案】(1)∠CAD的度数为30°;

(2)阴影部分的面积为.

【解析】试题分析:1)连接OD.由切线的性质可知ODBC,从而可证明ACOD,由平行线的性质和等腰三角形的性质可证明∠CAD=OAD;(2)连接OEEDOD先证明EDAO,然后依据同底等高的两个三角形的面积相等可知SAED=SEDO,于是将阴影部分的面积可转化为扇形EOD的面积求解即可.

试题解析:1)连接OD

BC是⊙O的切线,D为切点,

ODBC.

又∵ACBC

ODAC

∴∠ADO=CAD.

又∵OD=OA

∴∠ADO=OAD

∴∠CAD=OAD=30°.

2)连接OEED.

∵∠BAC=60°OE=OA

∴△OAE为等边三角形,

∴∠AOE=60°

∴∠ADE=30°.

又∵

∴∠ADE=OAD

EDAO

∴阴影部分的面积 = .

型】解答
束】
6

【题目】如图是由两个长方体组合而成的一个立体图形的三视图根据图中所标尺寸单位:mm),求这个立体图形的表面积

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,Rt△ABC中,∠BAC=60°,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.

(1)求∠CAD的度数;

(2)若OA = 2,求阴影部分的面积(结果保留π).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是常见的安全标记,其中是轴对称图形的是(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用了随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.

请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 .

(2)请补全条形统计图.

(3)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用画树状图或列表的方法求出恰好抽到1个男生和1个女生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,P是正方形ABCD对角线BD上的一动点不与BD重合,垂足分别为EF

求证:四边形AFPE为矩形;

求证:

EF取最小值时,判断四边形APEF是怎样的四边形?证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明想知道湖中两个小亭AB之间的距离,他在与小亭AB位于同一水平面且东西走向的湖边小道上某一观测点M处,测得亭A在点M的北偏东30°方向, B在点M的北偏东60°方向,当小明由点M沿小道向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭AB之间的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,6),B(3,n)两点.

(1)求反比例函数和一次函数的表达式;

(2)根据图象写出不等式kx+b﹣>0的解集;

(3)若点M在x轴上、点N在y轴上,且以M、N、A、B为顶点的四边形是平行四边形,请直接写出点M、N的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,已知点E和点F分别在直线ABCD上,ELFG分别平分∠BEF和∠EFCELFG.

(1)求证:ABCD

(2)如图,点MFD上一点,∠BEM,∠EFD的角平分线EHFH相交于点H,若∠H=FEM+15°,延长HEFGG点,求∠G的度数;

(3)如图,点N在直线AB和直线CD之间,且ENFN,点P为直线AB上的点,若∠EPF,∠PFN的角平分级交于点Q,设∠BEN=α,直接写出∠PQF的大小为(用含α的式子表示).

查看答案和解析>>

同步练习册答案