科目: 来源: 题型:
【题目】你知道古代数学家怎样解一元二次方程吗?以x2﹣2x﹣3=0为例,大致过程如下:第一步:将原方程变形为x2﹣2x=3,即x(x﹣2)=3.
第二步:构造一个长为x,宽为(x﹣2)的长方形,长比宽大2,且面积为3,如图所示.
第三步:用四个这样的长方形围成一个大正方形,中间是一个小正方形,如图所示.
第四步:计算大正方形面积用x表示为 .长方形面积为常数 .小正方形面积为常数 .
由观察可得,大正方形面积等于四个长方形与小正方形面积之和,得方程 ,两边开方可求得:x1=3,x2=﹣1.
(1)第四步中横线上应填入 ; ; ; .
(2)请参考古人的思考过程,画出示意图,写出步骤,解方程x2﹣x﹣1=0.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为
m,到墙边OA的距离分别为
m,
m.
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为10 m,则最多可以连续绘制几个这样的拋物线型图案?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在ABCD中,对角线AC、BD相交于点O,点E、F分别是边AD、AB上的点,连结OE、OF、EF.若AB=7,BC=5
,∠DAB=45°,则①点C到直线AB的距离是_____.②△OEF周长的最小值是________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.
(1)求b的值;
(2)若A(-2,y1),B(5,y2)是抛物线y=2x2+bx+1上的两点,试比较y1与y2的大小关系;
(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位长度,使平移后的图象与x轴无交点,求k的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在□ABCD中,E为BC的中点,过点E作EF⊥AB于点F,延长DC,交FE的延长线于点G,连结DF,已知∠FDG=45°
![]()
(1)求证:GD=GF.
(2)已知BC=10,
.求 CD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.
(1)若∠B=35°,∠ACB=85°,求∠E得度数.
(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:
①若a+b+c=0,则b2﹣4ac>0;
②若方程两根为﹣1和2,则2a+c=0;
③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;
④若b=2a+c,则方程有两个不相等的实根.其中正确的有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)①如图1,已知
,
,可得
__________.
![]()
②如图2,在①的条件下,如果
平分
,则
__________.
![]()
③如图3,在①、②的条件下,如果
,则
__________.
![]()
(2)尝试解决下面问题:已知如图4,
,
,
是
的平分线,
,求
的度数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为________.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com