科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AC为直径作
交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.
(1)求证: EF与
相切;
(2)若AE=6,
,求EB的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系
中,一次函数
(a为常数)的图象与y轴相交于点A,与函数
(x>0)的图象相交于点B(m,1).
![]()
(1)求点B的坐标及一次函数的解析式;
(2)若点P在y轴上,且△PAB为直角三角形,请直接写出点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】下面是小飞设计的“过圆外一点作圆的切线”的尺规作图过程.
已知:P为⊙O外一点.
求作:经过点P的⊙O的切线.
![]()
![]()
作法:如图,
①连接OP,作线段OP的垂直平分线交OP于点A;
②以点A为圆心,OA的长为半径作圆,交⊙O于B,C两点;
③作直线PB,PC.所以直线PB,PC就是所求作的切线.
根据小飞设计的尺规作图过程,
(1)使用直尺和圆规补全图形(保留作图痕迹);
(2)完成下面的证明(说明:括号里填写推理的依据).
证明:连接
,
,
∵
为⊙
的直径,
∴
( ).
∴
,
.
∴
,
为⊙
的切线( ).
查看答案和解析>>
科目: 来源: 题型:
【题目】电影公司随机收集了2000部电影的有关数据,经分类整理得到如表:
电影类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
电影部数 | 140 | 50 | 300 | 200 | 800 | 510 |
好评率 |
|
|
|
|
|
|
注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.
如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是______;
电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化
假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加
,哪类电影的好评率减少
,可使改变投资策略后总的好评率达到最大?
答:______.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋转90°后,得到矩形FGCE(点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC-CE运动到点E后停止,动点Q从点E开始沿EF-FG运动到点G后停止,这两点的运动速度均为每秒1个单位.若点P和点Q同时开始运动,运动时间为x(秒),△APQ的面积为y,则能够正确反映y与x之间的函数关系的图象大致是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在
中,
,
,点
从
点出发,沿着
以每秒
的速度向
点运动;同时点
从
点出发,沿
以每秒
的速度向
点运动,设运动时间为
秒.
![]()
(1)当
为何值时,
;
(2)是否存在某一时刻,使
?若存在,求出此时
的长;若不存在,请说理由;
(3)当
时,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,为了测量小山顶的铁塔AB高度,王华和杨丽在平地上的C点处测得A点的仰角为45°,向前走了18m后到达D点,测得A点的仰角为60°,B点的仰角为30°
(1)求证:AB=BD;
(2)求证铁塔AB的高度.(结果精确到0.1米,其中
≈1.41,
≈1.73)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为
.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,
求两次摸 出都是红球的概率;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com