精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2+bx+cx轴交于点AB(3,0),与y轴交于点C(0,3).

(1)求抛物线的解析式;

(2)若点M是抛物线上在x轴下方的动点,过MMNy轴交直线BC于点N,求线段MN的最大值;

(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.

【答案】(1)y=x2﹣4x+3;(2);(3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3).

【解析】

(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;
(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点Mx轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;
(3)讨论:当以AB为对角线,利用EA=EB和四边形AFBE为平行四边形得到四边形AFBE为菱形,则点F也在对称轴上,即F点为抛物线的顶点,所以F点坐标为(-1,-4);当以AB为边时,根据平行四边形的性质得到EF=AB=4,则可确定F的横坐标,然后代入抛物线解析式得到F点的纵坐标.

解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,

得:

解得

故抛物线的解析式为y=x2﹣4x+3.

(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,

把点B(3,0)代入y=kx+3中,

得:0=3k+3,解得:k=﹣1,

∴直线BC的解析式为y=﹣x+3.

MNy轴,

∴点N的坐标为(m,﹣m+3).

∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,

∴抛物线的对称轴为x=2,

∴点(1,0)在抛物线的图象上,

1<m<3.

∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣2+

∴当m=时,线段MN取最大值,最大值为

(3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3).

当以AB为对角线,如图1,

∵四边形AFBE为平行四边形,EA=EB,

∴四边形AFBE为菱形,

∴点F也在对称轴上,即F点为抛物线的顶点,

F点坐标为(2,﹣1);

当以AB为边时,如图2,

∵四边形AFBE为平行四边形,

EF=AB=2,即F2E=2,F1E=2,

F1的横坐标为0,F2的横坐标为4,

对于y=x2﹣4x+3,

x=0时,y=3;

x=4时,y=16﹣16+3=3,

F点坐标为(0,3)或(4,3).

综上所述,F点坐标为(2,﹣1)或(0,3)或(4,3).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,OABC的外接圆,AB为直径,DO上一点,且弧CB=CDCEDADA的延长线于点E

1)求证:∠CAB=∠CAE

2)求证:CEO的切线;

3)若AE1BD4,求O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的切线,切点分别为的直径,相交于点,连接.下列结论:①;②;③若,则;④.其中正确的个数为(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=

(1)求点A的坐标;

(2)点E在y轴负半轴上,直线ECAB,交线段AB于点C,交x轴于点D,SDOE=16.若反比例函数y=的图象经过点C,求k的值;

(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,对角线ACBD相交于点O,且对角线AC平分∠BCD,∠ACD30°,BD6

1)求证:△BCD是等边三角形;(2)求AC的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.

(1)2014年这种礼盒的进价是多少元/盒?

(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点,且点B在双曲线上,在AB的延长线上取一点C,过点C的直线交双曲线于点D,交x轴正半轴于点E,且,则线段CE长度的取值范围是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的正方形ABCD中,以B为圆心,AB为半径作扇形ABC,交对角线BD于点E,过点E作⊙B的切线分别交ADCDGF两点,则图中阴影部分的面积为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,ABBDCDBDAPPC,垂足分别为BPD,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.

1)证明:ABCD=PBPD

2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.

3)已知抛物线与x轴交于点A-10),B30),与y轴交于点(0-3),顶点为P,如图丙所示,若Q是抛物线上异于ABP的点,使得∠QAP=90°,求Q点坐标.

查看答案和解析>>

同步练习册答案