精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为2的正方形ABCD中,以B为圆心,AB为半径作扇形ABC,交对角线BD于点E,过点E作⊙B的切线分别交ADCDGF两点,则图中阴影部分的面积为(  )

A. B. C. D.

【答案】A

【解析】

由四边形ABCD是正方形,且GF是⊙B的切线可证出DGF是等腰直角三角形,再由正方形的边长,分别知道BE的长,再求出DE的长,进一步求出DG的长.再用正方形的面积-扇形的面积-三角形的面积即可求出阴影面积.

∵四边形ABCD是正方形,

∴∠ABC=ADC=90°,∠GDE=FDE=45°

GF是⊙B的切线,

BDGF

∴∠DEG=DEF=90°

∴∠DGE=45°,∠DFE=45°

DG=DFGF=2DE

DG=DF=DE

BD=AB=2

DE=BD-BE=2-2

DG=DF=2-2=4-2

S阴影=S正方形ABCD-S扇形BAC-SDGF

=2×2--4-22

=8-8-π

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cx轴交于点AB(3,0),与y轴交于点C(0,3).

(1)求抛物线的解析式;

(2)若点M是抛物线上在x轴下方的动点,过MMNy轴交直线BC于点N,求线段MN的最大值;

(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形纸片ABCD中,,翻折矩形纸片,使点A落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF

的长为多少;

AE的长;

BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点ABD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A处时,有A'BAB

(1)求ABD的距离;

(2)求A到地面的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初三某班同学小戴想根据学习函数的经验,通过研究一个未学过的函数的图象,从而探究其各方面性质.

下表是函数y与自变量x的几组对应值:

x

-1

0

1

2

3

4

5

6

9

12

y

-4

0

4

8

12

9

7.2

6

4

3

1)在平面直角坐标系xOy中,每个小正方形的边长为一个单位长度,描出了以上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象.

2)请根据画出的函数图象,直接写出该函数的关系式y=______(请写出自变量的取值范围),并写出该函数的一条性质:______

3)当直线y=-x+b与该函数图象有3个交点时,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,边长为4,∠MDN90°,将∠MDN绕点D旋转,其中DM边分别与射线BA、直线AC交于EQ两点,DN边与射线BC交于点F;连接EF,且EF与直线AC交于点P

1)如图1,点E在线段AB上时,①求证:AECF;②求证:DP垂直平分EF

2)当AE1时,求PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AFCD于点E,交BC的延长线于点F

1)求证:BF=CD

2)连接BE,若BEAFBFA=60°BE=,求平行四边形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:

甲、乙两组工作一天,商店各应付多少钱?

已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?

装修完毕第二天即可正常营业,且每天仍可盈利200即装修前后每天盈利不变,你认为商店应如何安排施工更有利?说说你的理由可用问的条件及结论

查看答案和解析>>

同步练习册答案