精英家教网 > 初中数学 > 题目详情

【题目】已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=

(1)求点A的坐标;

(2)点E在y轴负半轴上,直线ECAB,交线段AB于点C,交x轴于点D,SDOE=16.若反比例函数y=的图象经过点C,求k的值;

(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

【答案】(1)(-8,0)(2)k=- (3)(﹣1,3)或(0,2)或(0,6)或(2,6)

【解析】

(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;
(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;
(3)分四种情形分别求解即可解决问题;

(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,

∴OB=4,

在RtAOB中,tan∠BAO=

∴OA=8,

∴A(﹣8,0).

(2)∵EC⊥AB,

∴∠ACD=∠AOB=∠DOE=90°,

∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,

∵∠ADC=∠ODE,

∴∠OAB=∠DEO,

∴△AOB∽△EOD,

OE:OD=OA:OB=2,设OD=m,则OE=2m,

m2m=16,

m=4或﹣4(舍弃),

∴D(﹣4,0),E(0,﹣8),

直线DE的解析式为y=﹣2x﹣8,

∵A(﹣8,0),B(0,4),

直线AB的解析式为y=x+4,

,解得

∴C(),

若反比例函数y=的图象经过点C,

∴k=﹣

(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,

∴∠OBD=∠ODB=45°,

∴∠PNB=∠ONM=45°,

∴OM=DM=ON=2,

∴BN=2,PB=PN=

∴P(﹣1,3).

如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);

如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P(0,6)

如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).

综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知的半径是,直线相交于两点.上的一个动点,若,则面积的最大值是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字1234,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字123(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.

1)用树状图或列表法求出小颖参加比赛的概率;

2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边ABC如图放置,A(1,1),B(3,1),等边三角形的中心是点D,若将点D绕点A旋转90°后得到点D′,则D′的坐标(  )

A. (1+,0) B. (1﹣,0)或(1+,2)

C. (1+,0)或(1﹣,2) D. (2+,0)或(2﹣,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下.

成绩/

120﹣111

110﹣101

100﹣91

90以下

成绩等级

A

B

C

D

请根据以上信息解答下列问题:

(1)这次统计共抽取了   名学生的数学成绩,补全频数分布直方图;

(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?

(3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高40%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形的内接四边形,,点分别是弦上的点.

.求证:的直径.

的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算(每小题4分,共16分)

1

2)已知.求代数式的值.

3)先化简,再求值,其中.

4)解分式方程:+3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,EAD的中点,延长CEBA交于点F,连接ACDF

(1)求证:四边形ACDF是平行四边形;

(2)当CF平分∠BCD时,写出BCCD的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC各顶点的坐标分别为A-32),B-4-3),C-1-1

1)画出△ABC,并画出△ABC关于y轴对称的△A1B1C1,并写出A的对应点A1的坐标.

2)尺规作图,∠A的角平分线AD,交BC于点D(保留作图痕迹,不写作法).

查看答案和解析>>

同步练习册答案