精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,EAD的中点,延长CEBA交于点F,连接ACDF

(1)求证:四边形ACDF是平行四边形;

(2)当CF平分∠BCD时,写出BCCD的数量关系,并说明理由.

【答案】(1)证明见解析;(2)BC=2CD,理由见解析.

【解析】

(1)利用矩形的性质,即可判定FAE≌△CDE,即可得到CD=FA,再根据CDAF,即可得出四边形ACDF是平行四边形;

(2)先判定CDE是等腰直角三角形,可得CD=DE,再根据EAD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.

1)∵四边形ABCD是矩形,

ABCD,

∴∠FAE=CDE,

EAD的中点,

AE=DE,

又∵∠FEA=CED,

∴△FAE≌△CDE,

CD=FA,

又∵CDAF,

∴四边形ACDF是平行四边形;

(2)BC=2CD.

证明:∵CF平分∠BCD,

∴∠DCE=45°

∵∠CDE=90°

∴△CDE是等腰直角三角形,

CD=DE,

EAD的中点,

AD=2CD,

AD=BC,

BC=2CD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线C:y=x2+bx+c 交 轴于点A(0,-1)且过点 , P是抛物线C上一个动点,过P作PB∥OA,以P为圆心,2为半径的圆交PB于C、D两点(点D位于点C下方).

(1)求抛物线C的解析式;
(2)连接AP交⊙P于点E,连接DE,AC.若ΔACP是以CP为直角边的直角三角形,求∠EDC的度数;
(3)若当点P经过抛物线C上所有的点后,点D随之经过的路线被直线 截得的线段长为8,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,△EBC是等边三角形.

(1)求证:△ABE≌△DCE;

(2)求∠AED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,O为坐标原点四边形OABC为矩形,A(10,0),C(0,4),DOA中点PBC上以每秒1个单位的速度由CB运动设运动时间为t秒.

(1)△ODP的面积S=________.

(2)t为何值时四边形PODB是平行四边形?

(3)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在t的值并求出Q点的坐标若不存在请说明理由

(4)若△OPD为等腰三角形请写出所有满足条件的点P的坐标(请直接写出答案不必写过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子里有红、黄、白三种颜色的球共50个,它们除了颜色不同外都相同,其中黄球的个数比白球的个数少5个,已知从袋子里随机摸出一个球是红球的概率是

1)求袋子里红球的个数;

2)求从袋子里随机摸出一球是白球的概率,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在一条直线道路上分别从相距1500米的A,B 两点同时出发,相向而行,当两人相遇后,甲继续向点B前进(甲到达点B时停止运动),乙也立即向B点返回.在整个运动过程中,甲、乙均保持匀速运动.甲、乙两人之间的距离y(米)与乙运动的时间x(秒) 之间的关系如图所示.则甲到B点时,乙距B点的距离是米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察以下等式

1)按以上等式,填空:(      )

2)利用多项式的乘法法则,证明(1)中的等式成立.

3)利用(1)中的公式,化简求值:

其中

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y= x2+ x﹣ 的图象与x轴交于点 A,B,交 y 轴于点 C,抛物线的顶点为 D.

(1)求抛物线顶点 D 的坐标以及直线 AC 的函数表达式;
(2)点 P 是抛物线上一点,且点P在直线 AC 下方,点 E 在抛物线对称轴上,当△BCE 的周长最小时,求△PCE 面积的最大值以及此时点 P 的坐标;
(3)在(2)的条件下,过点 P 且平行于 AC 的直线分别交x轴于点 M,交 y 轴于点N,把抛物线y= x2+ x﹣ 沿对称轴上下平移,平移后抛物线的顶点为 D',在平移的过程中,是否存在点 D',使得点 D',M,N 三点构成的三角形为直角三角形,若存在,直接写出点 D'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得到△AB′C′,即如图,∠BAB′=θ, = = =n,我们将这种变换记为[θ,n].△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ= , n=

查看答案和解析>>

同步练习册答案