相关习题
 0  362448  362456  362462  362466  362472  362474  362478  362484  362486  362492  362498  362502  362504  362508  362514  362516  362522  362526  362528  362532  362534  362538  362540  362542  362543  362544  362546  362547  362548  362550  362552  362556  362558  362562  362564  362568  362574  362576  362582  362586  362588  362592  362598  362604  362606  362612  362616  362618  362624  362628  362634  362642  366461 

科目: 来源: 题型:

【题目】如图,抛物线铀交于两点(作点的左侧),与轴交于点,点为抛物线的对称轴右侧图象上的一点.

1a的值为_ ,抛物线的顶点坐标为_

2)设抛物线在点和点之间部分(含点和点)的最高点与最低点的纵坐标之差为,求关于的函数表达式,并写出自变量的取值范围;

3)当点的坐标满足:时,连接,若为线段上一点,且分四边形的面积为相等两部分,求点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在矩形中,,点是线段上的一个动点,以点为圆心,为半径作,连接.

(1)当经过的中点时,的长为_

(2)当平分时,判断的位置关系.说明理由,并求出的长;

3)如图2,当交于两点,且时,求点的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】有甲、乙两家草莓采摘园,草莓的销售价格相间,在生长旺季,两家均排出优惠方案.甲园的优惠方案是:采摘的草莓不超过时,按原价销售;若超过超过部分折优惠;乙园的优惠方案是:游客进园需购买元门票.采摘的草莓直接按降价出售.已知在甲园、乙园采摘草莓时,所需费用相同.

在乙采摘园所需费用( )与草梅采摘量(千克)满足一次函数关系,如下表:

数量/千克

···

费用

···

1)求的函数关系式(不必写出的范围)

2)求两个采摘园的草莓在生长旺季前的销售价格.并求在甲采摘园所需费用()与草莓采摘量(千克)的函数关系式

3)若嘉琪准备花费元去采摘草莓,去哪个园采摘,可以得到更多数量的草莓? 说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1.中,沿对角线所在的直线折叠,使点落在点处,于点.连接.

1)求证:

2)求证:为等腰三角形;

3)将图1的沿射线方向平移得到(如图2所示) .若在中,. 时,直接写出平移的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】我市各学校积极响应上级停课不停教、修课不停学的要求,开展了空中在线教学.其校就网络直播课的满意度进行了随机在线问卷调在,调在结果分为四类: A.非常满意;B.很满意;C.一般;D.不满意,将收集到的信息进行了统计,绘制成如下不完整的统计表和统计图(如图所示).请你根据统计图表所提供的信息解答下列问题:

1)接受问卷调查的学生共有__ _人;

2)补全条形统计图;

频数分布统计表

类别

频数

频率

3)若该校共有学生人,请你根据上述调查结果,估计该校对网络直播课满意度为类和类的学生共有多少人;

4)为改进教学,学校决定从选填结果是类的学生中,选取甲、乙、丙、丁四人,随机抽取两名同学参与网络座谈会,求甲、乙两名同学同时被抽中的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,点是数轴上:从左到右排列的三个点,分别对应的数为某同学将刻度尺如图2放置.使刻度尺上的数字对齐数轴上的点,发现点对齐刻度,点对齐刻度.

1)在图1的数轴上, 个单位长度;数轴上的一个单位长度对应刻度尺上的 .

2)求数轴上点所对应的数

3)在图1的数轴上,点是线段上一点,满足求点所表示的数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在⊙O的内接ABC中,∠CAB90°AB2AC,过点ABC的垂线m交⊙O于另一点D,垂足为H,点E上异于AB的一个动点,射线BE交直线m于点F,连接AE,连接DEBC于点G

1)求证:FED∽△AEB

2)若AC2,连接CE,求AE的长;

3)在点E运动过程中,若BGCG,求tanCBF的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,一次函数y=﹣x6x轴,y轴分别交于点AB将直线AB沿y轴正方向平移与反比例函数yx0)的图象分别交于点CD,连接BCx轴于点E,连接AC,已知BE3CE,且SABE27

1)求直线AC和反比例函数的解析式;

2)连接AD,求ACD的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】小颖综合与实践小组学习了三角函数后,开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,如表是不完整测量数据.

课题

测量旗杆的高度

成员

组长:小颖,组员:小明,小刚,小英

测量工具

测量角度的仪器,皮尺等

测量示意图

说明:

线段GH表示学校旗杆,测量角度的仪器的高度ACBD1.62m,测点ABH在同一水平直线上,AB之间的距离可以直接测得,且点GHABCD都在同一竖直平面内,点CDE在同一条直线上,点EGH上.

测量数据

测量项目

第一次

第二次

平均值

GCE的度数

30.6°

31.4°

31°

GDE的度数

36.8°

37.2°

37°

AB之间的距离

10.1m

10.5m

   m

1)任务一:完成表格中两次测点AB之间的距离的平均值.

2)任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(精确到0.1m)(参考数据:sin31°0.51cos31°0.86tan31°0.60sin37°0.60cos37°0.80tan37°0.75

查看答案和解析>>

科目: 来源: 题型:

【题目】成都市为了扎实推进精准扶贫工作,出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了25种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为ABCD类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成如图两幅不完整的统计图.请根据图中信息,回答下列问题:

1)本次抽样调查了多少户贫困户?

2)成都市共有9100户贫困户,请估计至少得到4种帮扶措施的大约有多少户?

32020年是精准扶贫攻关年,为更好地做好工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行试点帮扶,请用树状图或列表法求出恰好选中乙和丙的概率.

查看答案和解析>>

同步练习册答案