精英家教网 > 高中化学 > 题目详情
3.氢气是新型能源和重要化工原料.
已知:①2CO(g)+O2(g)=2CO2(g)△H1
②CH4(g)+2O2(g)=CO2(g)+2H2O(l)△H2
③H2(g)+$\frac{1}{2}$O2(g)=H2O(l)△H2
(1)科学家提出一种利用天然气制备氢气的方法:CH4(g)+CO2(g)=2CO(g)+2H2(g)△H,△H=△H2-△H1-2△H3,这种方法的推广与使用,不仅实现资源综合利用,而且还能解决环境问题是减少二氧化碳排放,缓解温室效应.
(2)氨气是重要化工原料,在国民经济中占重要地位.
①在恒温、容积相等的恒容密闭容器中投入一定量氮气、氢气,发生如下可逆反应:
N2(g)+3H2(g)═2NH3(g)△H=-92.4kJ•mol-1
实验测得起始、平衡时的有关数据如表所示:
容器编号起始时各物质的物质的量/mol平衡时反应中的能量变化
H2N2NH3
3nn0放出热量a kJ
3n2n0放出热量b kJ
6n2n0放出热量c kJ
下列判断正确的是BC.
A.N2的转化率:Ⅱ>I>Ⅲ
B.放出热量:a<b<92.4n
C.达到平衡时氨气的体积分数:Ⅲ>Ⅰ
D.平衡常数:Ⅲ>Ⅱ>Ⅰ
②在密闭恒容容器中投入一定量氮气和氢气,混合气体中氨气体积分数和温度关系如图所示:
曲线TJ段变化主要原因是平衡之前,反应向生成氨方向进行,JL段变化的主要原因是该正反应是放热反应,平衡之后,升高温度,平衡向逆方向移动,促进氨分解,氨的体积分数减小,氨气正反应速率:T点小于小于L点(填:大于、小于或等于).
③在2L密闭容器中充入一定量的氨气,氨气的物质的量与反应时间关系如表所示:
时间/min0510152025
NH3/mol21.00.50.250.240.24
在该条件下,前5分钟H2平均反应速率为0.15mol/(L•min).
④常温下,在V mL的a mol•L-1稀硫酸溶液中滴加b mol•L-1稀氨水V mL恰好使混合溶液呈中性.此时,一水合氨的电离常数Kb=$\frac{2a}{(b-2a)×1{0}^{7}}$(用含a、b代数式表示).
(3)氢气直接作燃料电池的理论输出电压为1.2V,能量密度E=$\frac{\frac{1.2V×\frac{1000g}{2g/mol×2×96500C/mol}}{1kg}}{3.6×1{0}^{6}J•k{W}^{-1}•{h}^{-1}}$=32.2kW•h•kg-1(列式计算,精确到小数点后一位.提示:能量密度=电池输出电能/燃料质量,1kW•h=3.6×106J,常用单位为kW•h•kg-1).

分析 (1)已知:①2CO(g)+O2(g)=2CO2(g)△H1
②CH4(g)+2O2(g)=CO2(g)+2H2O(l)△H2
③H2(g)+$\frac{1}{2}$O2(g)=H2O(l)△H2
由盖斯定律②-①-2×③可得CH4(g)+CO2(g)=2CO(g)+2H2(g);该方法减少了二氧化碳的排放;
(2)①恒温相同体积的容器,以Ⅰ为参照,Ⅱ则相当于在Ⅰ的平衡基础上加入n mol氮气,平衡较Ⅰ正向移动,Ⅲ的初始投入量是Ⅰ的两倍,则考虑为两个Ⅰ的平衡总和,容积相同,则将两个Ⅰ压缩体积,所以Ⅲ相当于对Ⅰ增大压强,平衡正向移动,据此分析;
②TJ段未达到平衡,反应向生成氨方向进行,温度升高,反应加快,氨气体积分数增大;当J点达到平衡,JL段:该正反应是放热反应,升高温度,平衡向逆方向移动,促进氨分解,氨的体积分数减小.L点温度高于T点温度,两点的各物质浓度相等;
③根据v=$\frac{△c}{△t}$计算氨气表示的反应速率,再由反应速率之比等于化学计量数之比计算氢气表示的反应速率;
④稀溶液总体积等于两种溶液体积之和,根据电荷守恒计算离子的浓度,根据电离平衡常数表达式计算即可;
(3)氢气直接作燃料电池的负极上的反应是:H2-2e-+2OH-=2H2O,根据能量密度定义计算即可.

解答 解:(1)已知:①2CO(g)+O2(g)=2CO2(g)△H1
②CH4(g)+2O2(g)=CO2(g)+2H2O(l)△H2
③H2(g)+$\frac{1}{2}$O2(g)=H2O(l)△H2
由盖斯定律②-①-2×③可得CH4(g)+CO2(g)=2CO(g)+2H2(g)△H=△H2-△H1-2△H3;该方法减少二氧化碳排放,缓解温室效应;
故答案为:△H2-△H1-2△H3;减少二氧化碳排放,缓解温室效应;
(2)①A、实验I和III比较,实验III相当于实验I体积压缩一半,加压时平衡向正方向移动,N2转化率增大,III中氮气转化率大于I中氮气转化率;I、II实验中氢气量相等,氮气量越多,氮气转化率减小,I中氮气转化率大于II中氮气转化率,故III、I、II中氮气转化率依次增大,A错误;
B、可逆反应的热化学方程式表示:1mol氮气和3mol氢气完全反应放出92.4kJ热量.根据可逆反应特点,3mol氢气和1mol氮气不能完全生成NH3.II生成的氨气量大于I,B项正确;
C、如果平衡不移动,III中氨气量是I中2倍,氨气体积分数相等.在恒容条件下,I容器加压变成III,增大压强,平衡向生成NH3方向移动,氨体积分数增大,C正确;
D、温度不变,平衡常数不变,三个容器中平衡常数相等,D错误;
故答案为:BC;
②TJ段未达到平衡,反应向生成氨方向进行,温度升高,反应加快,氨气体积分数增大;当J点达到平衡,JL段:该正反应是放热反应,升高温度,平衡向逆方向移动,促进氨分解,氨的体积分数减小.L点温度高于T点温度,两点的各物质浓度相等,所以,L点氨的正反应速率较大;
故答案为:平衡之前,反应向生成氨方向进行;该正反应是放热反应,平衡之后,升高温度,平衡向逆方向移动,促进氨分解,氨的体积分数减小;小于;
③由表可知,前5min生成氨气1mol,则v(NH3)=$\frac{1mol÷2L}{5min}$=0.1mol/(L•min),根据化学反应中速率之比等于系数之比,得出v(H2)=1.5v(NH3)=0.15mol/(L•min);
故答案为:0.15mol/(L•min);
④稀溶液总体积等于两种溶液体积之和.根据电荷守恒有:c(NH4+)+c(H+)=c(OH-)+2c(SO42-),当溶液呈中性时c(H+)=c(OH-)=1.0×10-7mol/L,推知:c(NH4+)=2c(SO42-),c(SO42-)=0.5a mol/L,c(NH4+)=a mol/L,c(NH3•H2O)+c(NH4+)=0.5b mol/L,c(NH3•H2O)=(0.5b-a)mol/L.Kb=$\frac{c(N{{H}_{4}}^{+})•c(O{H}^{-})}{c(N{H}_{3}•{H}_{2}O)}$=$\frac{a×1{0}^{-7}}{0.5b-a}$=$\frac{2a}{(b-2a)×1{0}^{7}}$;
故答案为:$\frac{2a}{(b-2a)×1{0}^{7}}$;
(3)H2-2e-+2OH-=2H2O,根据能量密度定义,E=$\frac{\frac{1.2V×\frac{1000g}{2g/mol×2×96500C/mol}}{1kg}}{3.6×1{0}^{6}J•k{W}^{-1}•{h}^{-1}}$=32.2kW•h•kg-1,故答案为:$\frac{\frac{1.2V×\frac{1000g}{2g/mol×2×96500C/mol}}{1kg}}{3.6×1{0}^{6}J•k{W}^{-1}•{h}^{-1}}$=32.2kW•h•kg-1

点评 本题综合考查学生化学反应速率的计算、化学平衡移动原理的应用、溶液中离子浓度之间的关系等知识,注意知识的归纳和梳理是解题的关键,题目难度大.

练习册系列答案
相关习题

科目:高中化学 来源: 题型:解答题

1.铁及其化合物在日常生活、生产中应用广泛.
(1)高铁酸钠(Na2FeO4)是水处理过程中的一种新型净水剂,工业上利用NaClO 和NaOH的混合溶液将Fe(OH)3氧化性制备高铁酸钠,反应的化学方程式为2Fe(OH)3+3NaClO+4NaOH═2Na2FeO4+3NaCl+5H2O;高铁酸钠能用作新型净水剂的原理是本身具有强氧化性可杀菌消毒,在反应中被还原成三价铁离子水解生成氢氧化铁胶体净水,Fe3++3H2O?Fe(OH)3(胶体)+3H+;(用离子方程式表示).
(2)氧化铁红颜料跟某些油料混合,可以制成防锈油漆.以黄铁矿为原料制硫酸产生的硫酸渣中含Fe2O3、SiO2、Al2O3、MgO等,用硫酸渣制备铁红(Fe2O3)的过程如下:

①酸溶过程中发生反应的化学方程式为Fe2O3+3H2SO4═Fe2(SO43+3H2O,Al2O3+3H2SO4═Al2(SO43+3H2O,MgO+H2SO4═MgSO4+H2O;“滤渣A”主要成份的化学式为SiO2
②还原过程中加入FeS2的目的是将溶液中的Fe3+还原为Fe2+,而本身被氧化为H2SO4,请写出该反应的离子方程式FeS2+14Fe3++8H2O═15Fe2++2SO42-+16H+
③氧化过程中,O2、NaOH与Fe2+反应的离子方程式为4Fe2++O2+2H2O+8OH-=4Fe(OH)3↓.

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

2.近年来发现用铈(Ce)的氧化物可高效制取H2,制备原理如图所示,已知0<δ<2,下列说法不正确的是(  )
A.太阳能最终转变为化学能B.CeO2是水分解的催化剂
C.T<1050℃时,CeO2-δ比CeO2稳定D.两步反应均属于氧化还原反应

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

19.含扑热息痛高分子药物是最常用的非抗炎解热镇痛药,解热作用与阿司匹林相似,其合成流程图如图,其制备过程中还可制得高分子材料E,

已知:I.含扑热息痛高分子药物的结构为:
II.
III.
(1)A的结构简式为扑热息痛的结构简式为
(2)②的反应类型为加成
(3)写出C6H6O一种用途杀菌消毒
(4)D物质其质谱图显示相对分子质量为100,通过燃烧实验得知10.0g该物质完全燃烧得到22.0gCO2与7.2gH2O.则D分子中所含官能团为碳碳双键和酯基
写出D→E发生的化学方程式
(5)写出含扑热息痛高分子药物与足量氢氧化钠溶液发生反应的化学方程式
(6)写出所以同时符合下列条件的D的同分异构体的结构简式:
①与D具有相同官能团
②能发生眼镜反应
③H核磁共振谱中有四种不同环境的氢原子比例分别为1:2:2:3.

查看答案和解析>>

科目:高中化学 来源: 题型:推断题

6.A、B、C、D、E、F和G都是有机化合物,它们的关系如图所示:
(1)化合物C的分子式是C8H10O,C遇FeCl3溶液显紫色,C苯环上的一溴代物只有两种,则C的结构简式可能为(写出一种即可).
(2)D为一直链化合物,其相对分子质量比化合物C的小34,它能跟NaHCO3反应放出CO2,则D结构简式为CH3CH2CH2COOH.
(3)反应①的化学方程式是


.①反应的反应类型取代反应
(4)芳香族化合物B是与A具有相同官能团的同分异构体,通过反应②化合物B能生成E和F,E苯环上的一溴代物只有一种,
I.F中官能团名称羟基
II.E可能的结构简式是

查看答案和解析>>

科目:高中化学 来源: 题型:解答题

8.将燃煤废气中的CO2转化为二甲醚的反应原理为:2CO2(g)+6H2(g)$\stackrel{催化剂}{?}$CH3OCH3(g)+3H2O(l)
(1)该反应的化学平衡常数表达式K=$\frac{c(C{H}_{3}OC{H}_{3})}{{c}^{2}(C{O}_{2}){c}^{6}({H}_{2})}$;
(2)已知在某压强下,该反应在不同温度、不同投料比时,达平衡时CO2的转化率如图所示:
①该反应的△H<0;(填“>”或“<”).
②若温度不变,减小反应投料比$\frac{n({H}_{2})}{n(C{O}_{2})}$,K值将不变(填“增大”、“减小”或“不变”);
③700K投料比$\frac{n({H}_{2})}{n(C{O}_{2})}$=2时,达平衡时H2的转化率a=45%;
(3)某温度下,向体积一定的密闭容器中通入CO2(g)与H2(g)发生上述反应,下列物理量不再发生变化时,能说明反应达到平衡状态的是ABC;
A.二氧化碳的浓度       B.容器中的压强
C.气体的密度           D.CH3OCH3与H2O的物质的量之比
(4)某温度下,在体积可变的密闭容器中,改变起始时加入各物质的量,在不同的压强下,平衡时CH3OCH3(g)的物质的量如表所示:
P1P2P3
I.2.0molCO2       6.0molH20.10mol0.04mol0.02mol
Ⅱ.1.0mol CO2      3.0molH2X1Y1Z1
Ⅲ.1.0molCH3OCH3   3.0molH2OX2Y3Z2
①P1>P2(填“>”“<”或“=”)
②X1=0.05mol
③P2下Ⅲ中CH3OCH3的平衡转化率为96%.

查看答案和解析>>

科目:高中化学 来源: 题型:填空题

15.氮是重要的非金属元素.
(1)工业上用N2(g)和H2合成NH3(g),反应为N2(g)+3H2(g)?2NH3(g)
①氮气的结构式为N≡NNH3的电子式为
②T℃时,在一个容积为3L的密闭容器中进行上述反应,反应开始时,n(N2)=6mol,n(H2)=12mol,2min后达到平衡,此时n(H2)=3mol.该反应从反应开始到平衡的平均化学反应速率V(NH3)=1mol/(L•min),平衡常数为K=4(计算出结果)
③下列能说明上述反应在恒温恒容条件下已达到平衡状态的是BD(填编号)
A.3v(N2)=v(H2)           B.容器压强不再发生变化
C.容器内气体密度不再发生变化    D.N2的体积分数不再发生变化
E.若单位时间内生成x molN2的同时,消耗x mol NH3,则反应达到平衡状态
(2)硝酸盐是主要的水污染物.催化剂存在下,H2能将NO3-还原为N2,25℃时,反应10min,溶液的pH由7变为12.
①上述反应离子方程式为5H2+2NO3-═N2+2OH-+4H2O
②还原过程中可生成中间产物NO2-,NO2-可以发生水解,写出两种促进NO2-水解的方法升温、加水(稀释)、加酸等(任意两种即可).
③用电解也可以实现NO3-转化为N2.阴极反应式为2NO3-+10e-+6H2O=N2↑+12OH-

查看答案和解析>>

科目:高中化学 来源: 题型:实验题

12.某同学设计下列实验,来研究硫酸和硝酸的性质.

实验一:在一支试管中放入一块很小的铜片,再加入2mL浓硫酸,然后把试管固定在铁架台上.把一小条蘸有品红溶液的滤纸放入带有单孔橡皮塞的玻璃管中.塞紧试管口,在玻璃管口处缠放一团蘸有Na2CO3溶液的棉花.给试管加热,观察现象.当试管中的液体逐渐透明时,停止加热.待试管中的液体冷却后,将试管中的液体慢慢倒入另一支盛有少量水的试管中,观察现象.
回答下列问题:
(1)a处反应的化学方程式为Cu+2H2SO4(浓)$\frac{\underline{\;\;△\;\;}}{\;}$CuSO4+SO2↑+2H2O,计算放出112mL气体(标准状况),转移电子的物质的量为0.01mol.
(2)试管中的液体反应一段时间后,b处滤纸条的变化为蘸有品红溶液的滤纸条褪色.
待试管中反应停止后,给玻璃管放有蘸过品红溶液的滤纸处微微加热,滤纸条的变化为滤纸变红.
实验二:为了证明铜与稀硝酸反应产生一氧化氮,某同学设计了一个实验,其装置如图2所示(加热装置和固定装置均已略去).A为注射器,B为两端长短不等的U形管,C是装有NaOH溶液的烧杯,D处是绕成螺旋状的铜丝,K1、K2是止水夹.
(1)实验时,为在D处收集到NO,以便观察颜色,必须事先在A中吸入一定量的空气.然后关闭K1(“关闭”或“打开”),从U形管左端注入稀硝酸.
(2)然后给装置B微微加热,在装置D处产生无色气体,其反应的离子方程式为:3Cu+8H++2NO3-═3Cu2++2NO↑+4H2O.
(3)如何证明D处聚集的是NO而不是H2?打开止水夹K1,把注射器中的空气压入U形管中,若观察到D处气体变红棕色,则证明收集的是NO,而不是H2
(4)实验现象观察完毕,关闭止水夹K1,打开止水夹K2,在重力作用下,U形管右端的红棕色混合气体被酸液压入NaOH溶液中吸收,消除了环境污染.

查看答案和解析>>

科目:高中化学 来源: 题型:选择题

13.设NA表示阿伏加德罗常数,下列说法中不正确的是(  )
A.5.85gNaCl晶体中含有0.1 NA 个Na+
B.1molFeCl3 完全水解转化为Fe(OH)3胶体后能生成NA个胶体粒子
C.过量的Zn与含1molH2SO4的稀H2SO4完全反应,转移的电子数一定为2NA
D.一定量的Fe 与含1molHNO3的稀HNO3恰好完全反应,被还原的氮原子数小于NA

查看答案和解析>>

同步练习册答案